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Abstract—Improving the prediction of the availability of solar
energy resources became a necessary component in the operation
of utilities with a high penetration level of renewable energy
resources. In this paper, the solar insolation data in spatial
proximity is leveraged to investigate the error in the prediction
of solar insolation using multiple learning algorithms. Different
error measures are utilized to evaluate the accuracy of the
presented linear and non-linear learning algorithms. Essential
data pre-processing steps are conducted on the solar insolation
data available from multiple meteorological stations in spatial
proximity. The impact of utilizing the spatio-temporal data
compared to temporal data is analyzed. A comprehensive analysis
based on multiple error measures is presented to compare the
prediction error while employing multiple learning algorithms.
It is shown that it is possible to identify the particular station
and the particular learning algorithm that contribute the most
in improving the solar insolation prediction of a specific location.

Index Terms—Spatio-temporal data, solar insolation, learning
algorithms, spatial proximity, weather reported data.

I. INTRODUCTION

ENEWABLE energy resources including solar energy have
brought several opportunities and challenges to the op-
eration of the power system. Over recent years, the share of
solar energy resources in the electricity generation mix has
rapidly increased because of the aim to reduce the carbon
footprint of clectricity generation as well as the decrease in
their installment cost. Nevertheless, power system operators
still need to accommodate the intrinsic intermittency in the
availability of solar energy resources with advanced prediction
techniques [1]. Since the availability of solar energy resources
is directly related to solar insolation, solar insolation prediction
is critical to ensure a smooth operation of the power system
with a high penetration level of solar energy resources. This
work aims to leverage the spatial proximity data to enhance
the prediction of solar insolation prediction by finding answers
to the following questions.

1) What would be the best way to describe the accuracy of
a learning algorithm for solar insolation prediction?

2) Is it possible to identify a single set of error measure,
learning algorithm, and predetermined spatio-temporal
relationship for solar insolation prediction?

3) Is it possible to define a specific set of spatial proximity
data to enhance solar insolation prediction?

4) Is it possible to provide the best combination of spatial
proximity data and learning algorithm in prediction
performance perspective?
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In [1], satellite and numerical weather prediction were used as
the best tools for the hour-ahead and day-ahead solar insolation
prediction because it was an adequate prediction technique for
time horizons of more than 5 hours. To estimate and measure
weather information, various algorithms such as metaheuristic,
machine learning, and neural network have been proposed for
solar insolation, wind speed, and raindrops, respectively [2]—
[4]. However, modern solar insolation prediction is more
complex. The sky image is leveraged in [5], [6], where short-
term solar insolation is predicted with multiple total sky
images. A ground-based sky imaging system is applied to solar
insolation prediction [6]. Various satellite images are used to
predict solar insolation and power in [7]-[9]. In [7], a solar
power prediction model is proposed based on various satellite
images and a support vector machine (SVM) learning scheme.
To improve the results obtained with ground data, satellite’s
global horizontal irradiance (GHI) data, as well as total cloud
cover data, are used as additional inputs for the artificial neural
network model in [8]. Solar insolation prediction using satellite
images based on cloud motion vectors is proposed in [9]. PV
module characteristics are also considered in the prediction
model where historical data includes measurements of the PV
currents, voltages, and the module temperature, information
normally available to the PV plant operator [10].

Among the recent regression models, a weighted Gaussian pro-
cess regression approach is provided in [11] that data samples
with higher outlier potential have a low weight. In terms of
Markov properties, the model of [12] predicted the probability
distribution function of power generation of PV systems
based on the higher order Markov chain. The authors of [13]
presented Hidden Markov Model with Pearson R model which
is utilized for the extraction of shape based clusters from the
input meteorological parameters. In [14], K-means clustering
algorithm was applied to collect meteorological data and one-
hour ahead prediction of solar insolation is performed based
on meteorological factors including the cloud cover and SVM.
In [15], at the early stage, the author used one year of three
publicly available numerical weather prediction models, the
North American mesoscale forecast system, the global forecast
system, and the short-range ensemble forecast. Then, after the
analog ensemble/blending procedure, forecast error could be
reduced in PV power prediction compared with persistence
model, system advisor model, and SVM respectively. The
authors of [2] proposed a shallow neural network with an
embedded sensor system to achieve a cost-effective solar
insolation estimate of large PV plants. In [16], the authors
reviewed various prediction methodologies including simple
second-order regression, shallow neural network, quantile ran-
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dom forest, k-nearest neighbors, and support vector regression.
Then these models are averaged out as an ensemble model
with optimal weights. Although 32 PV datasets and solar
insolation information are utilized for predictive models, it
only focused on the dedicated analysis of individual PV plant
without characterizing the interdependence between multiple
PV sites. According to [16], since the accuracy of solar
power prediction heavily depends on the accuracy of available
solar insolation, it is necessary to verify the spatio-temporal
relationship to enhance the prediction of solar insolation in
multiple meteorological stations.

To capture spatio-temporal relations of the solar insolation,
a generative model with convolutional graph auto-encoder
is proposed in [17] by verifying the reliability, sharpness,
and continuous ranked probability score. Another attempt
presented in [18] was to simulate the solar power genera-
tion by a wavelet-based variability model which requires a
single sensor’s time-series measurements and distance-based
correlation function. In [19] the probabilistic forecast model
was proposed to predict densities of solar generation, where
quantile regression with L penalization is adapted to deal
with the high dimensional input of numerous solar sites. The
authors of [20] point out that the performance of prediction
highly depends on the time resolution (the sampling rate),
especially for partly cloudy and partly sunny weather, which
in turns causes significant errors. Considering temporal and
spatial dynamics [20], the proposed hidden Markov models
of [21] estimated solar power distributions and geographic
auto-correlation based on high temporal and spatial resolu-
tion data from closely distributed solar sites., e.g., 1-15mins
resolution data, and subdivided 2km? regions from one of
two 256km? areas. It is shown in [22] that a spatial-temporal
model could successfully reduce prediction errors. This paper
aims to further assess the importance of spatio-temporal re-
lationships on improving the solar insolation prediction given
various learning algorithms based on various error metrics.
The contributions of this paper are summarized as follows:

1) The real data for solar insolation in spatial proximity
is exploited to assess the impact of utilizing the spatio-
temporal correlation within the data for improving the
solar insolation prediction. A data cleansing process
is implemented on the available data set to enhance
the accuracy of the learning algorithm. Besides, the
most important features for short-term solar insolation
prediction are selected which verifies the importance of
the solar insolation data in spatial proximity.

2) The performance of various linear and non-linear learn-
ing algorithms based on temporal data and spatio-
temporal data are investigated. The merits of each al-
gorithm are discussed in detail to customize the best
strategies to enhance solar insolation prediction.

3) The impact of the spatio-temporal data from adjacent
stations on the solar insolation of a station is illustrated.
Also, the most influential station to improve the perfor-
mance of solar insolation prediction for each station is
identified.

4) A comprehensive analysis is executed over the perfor-
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mance of each of the implemented learning algorithm,
where multiple error metrics are presented to measure
the accuracy of insolation prediction based on various
measures. We summarize the best combination of learn-
ing methods and important adjacent stations for each
station, respectively.

II. LEARNING ALGORITHMS AND METHODOLOGIES

Suppose that there is an ideal and unknown target function
f+ X — Y where & is input space whose elements are x €
X =R and Y is output space whose elements are y € ) =
R. The data set D = (x1,¥1), -+ , (Xn,yn) consisting of a
vector of elements (x;,y;). Since the target f is unknown, the
function is learned from the given data set. Through a learning
algorithm A, a hypothesis g is selected from hypothesis set H,
and g is used for a learned prediction function when g =~ f.
Fig. 1 shows a summary of the learning setup for predictive
models [23].

Unknown Target Function Training Examples
frx-Y (x1,91)s -+ » (XN, YUN)
(ex. Ideal predictive function) (ex. Historical records or time-series data sets)
L2
Hypothesis Set Learning Algorithm
H A
(ex. Set of candidate functions) (ex. Linear regression or deep neural network)
L2
Final Hypothesis
g f
(ex. Learned predictive function)

Fig. 1. Summary of the general learning setup.

A. Linear regression (LR) with multiple features

The LR method is a linear learning algorithm. Suppose n-
multiple features as input space for learning algorithms with
m-training examples. For it" training example x; € X' = R",
xI = [tV ,mgj), -+, ™), where :rgj) is the value of the
feature j in i*" training example. For convenience of notation,
x§°) =1, then x; € R**! are defined in linear models. For

multiple features input x, a hypothesis g of the LR method is
(D

where § € R""! is a vector of parameters (weights) param-
eterizing the space of the LR method function g: X — ).
As a conventional method, 6 is adjusted by using the cost
function with training examples. For m-training examples, the
cost function J of the LR method is as follows:

T (0) = 5D (g (x0) )"
i=1

g, (x) =0"x,

@)

Then 6 is updated to minimize the sum of the squared residuals
in the cost function by using the gradient descent algorithm
and the learning rate.

B. Least absolute shrinkage and selection operator (LASSO)

The LASSO method is also a linear learning algorithm that
adds a penalty term (L regularization) in the cost function
of the linear regression which is the absolute value of the
magnitude of the parameters, e.g., the penalty term is A||6||1,
where ) is a tuning parameter that controls the speed of the
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improvement in error by adjusting the penalty effect. Similar
to the LR method, a hypothesis g of the LASSO method is

gLASSO(x) =6Tx. 3)
and the cost function J of the LASSO method is
1 m
T = 5D (o) — ) A6 )
i=1

when A is zero, the LASSO method is simply equivalent to
the LR method.
C. Support vector regression (SVR)

The SVR method is a non-linear learning algorithm. The
e-support vector regression (e-SVR) is represented here. For
m-training examples, the standard form of SVR is

. 1 2 . *
Juin o SlwlE C;(& +&), G
subject to wlo(x)+b—y; <e+&, (5b)
yi—wio(xi) —b<e+&, (50
fz‘afZZOJ:l»“'»ma (Sd)

where given hyper-parameters C' > 0 and ¢ > 0, ¢(x;)
maps X; into a higher dimensional space, w and b are
coefficients, and two positive slack variables & and &* are
introduced to represent the distance from the actual values to
the corresponding boundary values of the e-tube with support
vectors. Based on the Karush-Kuhn-Tucker (KKT) conditions,
the optimization problem is solved by transforming into the
dual problem with Lagrange multipliers. The dual problem is

1
min “(a—a")TQ(a — a*)
ag,of 2
m m
+ed (aita))+ Y wilai—af), (6a)
i=1 i=1
subject to ella—a*)=0, (6b)
0<o,a <C,i=1,---,m, (6¢)

T

where «;, o

» are Lagrange multipliers, e* is the all ones
vector, and () is an m by m positive semi-definite matrix.
Qr; = K(xg,x;), where K (xy,x;) is the kernel function,
e.g., K(xk,x;) = ¢(xx)T é(x;). The kernel function is used
as the radial basis function (RBF) kernel, so K(x,x;) =
exp(—~||xx — x;]|?), where v is kernel parameter. Once the
dual problem is solved, a hypothesis g of SVR with m-training

examples is
m

o (¥) = Y _(—i + ] K (x;,%) + . (7)
i=1
D. Deep neural network (DNN)

An artificial neural network (ANN) combines multiple pro-
cessing layers that use simple and interconnected non-linear
functions in parallel. Specifically, components of an ANN have
an input layer, multiple hidden layers, and an output layer.
The layers are interconnected via nodes, or neurons, and each
layer gets the outputs of the previous layer as its input. A
multilayer perceptron (MLP) which is a class of feedforward
neural network is used here. If there are many hidden layers
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Hidden layers

Output
layer

Fig. 2. A structure example of a feedforward deep neural network (DNN).

with large-scale neurons in an ANN, its structure can be
considered as a deep neural network (DNN). Fig. 2 shows
an example of DNNGs structure with input, hidden, and output
layers. The DNN method is a non-linear learning algorithm.
When the DNN method has L total layers (hidden and output
layers), a hypothesis g is

gDNN = SD[L] (W[L]V[L_l] + b[L]> ) (8)

where for the output layer L, @[L] is an activation function,
W is an nl* by nlf—1) weight matrix (n[Y is the number of
neurons in [*" layer), v[*~1 is the outputs of the previous L—1
hidden layer, and ") is an nl" by 1 bias vector. Similarly, as
VI = QB (WE= =21 4 pE=1)) Jin the first hidden
layer, vt = [t (Wx 4 bl!) with multiple features input x.
And for m-training examples, the cost function J of the DNN
method is

1

J (WL BIE L ity = — D LGy (xi)swi), 9
=1

DNN
where the function £ can be various loss functions such
as the cross-entropy loss, the mean absolute error and the
mean square error for different predictive purposes. Then all
parameters of the cost function can be updated by various
gradient descent algorithms with proper learning rates.

III. PREDICTION PERFORMANCE EVALUATION

The following metrics are presented to measure the perfor-
mance of learning algorithm presented in the previous section.

1) Mean-absolute error (MAE): MAE reflects the average
magnitude of the errors.

1 S
;ZI% = Gl
t=1

where s is the number of samples of test data, y; is actual
value, and g is the predicted value.

(10)

2) Relative (or normalized) mean-absolute error (rMAE or
nMAE): tMAE is the normalized MAE by the mean of actual

values. s s
| /3
s Yt — Yt 3 Yi
t=1 t=1

3) Root-mean-square error (RMSE): RMSE is the square
root of the quadratic mean of errors.

1< X
S Z(yt —G)?
=1 ‘

(1

(12)
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4) Relative (or normalized) root-mean-square error with the
mean (rRMSE_mean): TRMSE_mean is the normalized RMSE

by the mean of actual values.
S

éZ(yt—Qt)Q / ézyt
t=1

t=1

(13)

5) Relative (or normalized) root-mean-square error with the
maxmin (rRMSE_maxmin): tRMSE_maxmin is the normal-
ized RMSE by the difference between the maximum and the
minimum values of actual values.

1 S
S Z(yt — t)? / [Ymax — ymin].
=1

(14)

IV. DATA PREPARATION

A. Geographical information and data set

The data set for solar insolation from four weather stations
are utilized here [24]. Fig. 3 shows the geographical distri-
bution of these four weather stations in San Diego County,
California. The acrial distance between stations is about 10

+

__ ElCentro
®

Camna

Fig. 3. Geographical location of weather stations in San Diego, California.

to 20 miles. As the minimum resolution, hourly solar in-
solation [Wh/m?] is currently available at each station from
00:00 to 23:00 (PST) [24]. Note that different time resolution
can significantly affect on the prediction performance due
to the weather dynamics [20], [25]. In addition to the time
resolution, the prediction of solar insolation depends on the
geographical location (spatial data) and ambient conditions (air
temperature, wind, and gust speed) [25]. The main motivation
is to verify the effectiveness of the geographical information,
and the proposed learning models are also scalable regardless
of the time resolution. Here, the time resolution is set to be
an hour to verify the impact of spatial proximity data on the
solar insolation prediction. The detail information including
station ID, latitude and longitude, as well as clevation are
presented in Table I [24]. These stations are selected as not
only they are geographically dispersed, but also they are in
various elevations in the mountain area with diverse cloud
coverage.

TABLE 1
INFORMATION OF WEATHER STATIONS.
Station_ID TNSC1 FHCClI MLGCI CMNCI
(Name) A) B) © D)
Latitude 32.67 32.99 32.88 32.72
Longitude -116.09 -116.07 -11643  -116.46
Elevation [ft] 2044 781 5737 3268
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B. Data cleansing

Here, the full records of hourly solar insolation data from
March 134 2017, 00:00 to June 304 2017, 23:00 is utilized.
The same resolution is employed for the short-term prediction
of solar insolation. Since the data gathering process is not
ideal, there are multiple series of missing and duplicated
values in the raw data set. Therefore, imputation techniques
are employed to replace these abnormal values by interpolating
neighbor values in highly correlated time steps. After data
cleansing, the total of 110 days of data is available in which
are compatible with 2,640 hourly solar insolation samples. All
samples of 110 days are used in approximately 99 days for
training and verification examples and are used in approxi-
mately 11 days for test data.

C. Data pre-processing

Data pre-processing includes input data dimension (feature
selection) and input data normalization (feature normaliza-
tion). Feature selection is necessary to utilize an adequate time
horizon as input features to capture daily status. Intuitively,
the short-term prediction is mainly affected by the daily
periodicity of local daylight hours as well as the temporal
tendency of highly correlated time intervals. In addition to
one station’s temporal data, spatio-temporal data from adjacent
stations might be meaningful to improve the prediction of
solar insolation. As a preliminary step, we need to quantify
the importance of available input information to investigate
the potential improvement of utilizing the spatio-temporal data
from an adjacent station. To do so, the Gini index of decision
tree algorithms is leveraged as feature importance values. In
Fig. 4, the top 10 most important features are represented in
station A perspective, when both station A’s temporal data Alt]
and station B’s spatio-temporal data B[t] are utilized together,
where [t] means a t-hour ahead temporal information. Note

All]

z A2
A48
B[3]
B[2]
Al26]
A27]
Al47]
Al2]
Al46]

Top priority input featur

1072 107! 10°
Normalized relative importance

1073

Fig. 4. For station A, the top important input features are illustrated when
both its own temporal data A[t] and station B’s spatio-temporal data B[t] are
utilized together, where [¢] means a ¢-hour ahead temporal information.

that all of the importance values are relatively scaled to the
maximum importance value. It is not surprising that the most
effective time features are a few last hours on that day as
well as a few hours around on previous days. This is why
highly correlated previous time steps such as 1, 25, and 48
show a dominant importance value. Even though the result
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of feature importance cannot capture all relationships between
output and input data, it is reasonable to select a proper amount
of significant features to capture daily periodicity and daily
tendency. Based on a heuristic search, a 30-hour time horizon
is selected as input features for our simulation.

Feature normalization can be useful when features use
different scales, ranges, and units. The presented learning
algorithms might converge during training without feature
normalization because features of previous time horizon use
the same unit as the input. However, in case that models are
difficult for training, features should be normalized by remov-
ing the mean and scaling to unit variance as a standard scale.
Here, the statistics are extracted only from training examples
because learning algorithms do not have any information about
test data.

V. SIMULATION RESULTS

Once the essential steps of data cleansing and pre-

processing are verified, the input data is ready to train the
learning algorithms. To perform hour-ahead prediction, the
parameter ) for the LASSO method is assumed to be 2.0x 102,
while this parameter is zero for the LR method. For the SVR
method, v of RBF is 107, Cis 103, and € is 10~ 1. The DNN
method has a total of five layers with neurons where four
hidden layers have 240, 120, 60, and 30 activation functions
of rectified linear units (ReLU), respectively, and an output
layer has a linear activation function.
In the training data, target hours of prediction are set from
06:00 to 20:00 as meaningful daylight periods. The rest of the
time intervals are dropped to eliminate the unnecessary night-
time periods. This will enhance the prediction accuracy by ex-
posed to a misleading great performance when the prediction
of solar insolation is obvious to be zero. The performance of
the presented learning algorithms is investigated based on the
proposed error metrics given spatio-temporal data from four
adjacent stations. For each station, the performance of learning
algorithms is compared given the temporal data. Then, the
possibility of improvement in the performance of each learning
algorithm with the spatio-temporal data from adjacent stations
is analyzed. For each station, the goal is to determine the
best learning algorithm and find the interdependencies to the
insolation of adjacent stations.

A. Station A

The performance of the presented learning algorithms when
utilizing the temporal data for station A is presented in
Table II, where multiple forecast errors measures are listed.
First, in terms of the two linear algorithms, the regularization
of the LASSO method demonstrates an improvement for all
error measures compared to the LR method. For example, the
LASSO method shows 6.4% improvement in both the MAE
and the rMAE (nMAE). Since the rMAE (nMAE) is a normal-
ized value of the MAE, it has the same error improvement as
the MAE. Second, the prediction errors substantially decreased
from lincar algorithms to non-linear algorithms. Similar to
the DNN method, non-linearity of the SVR method indicates
compatible improvement in both the MAE and the RMSE,
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TABLE I
PREDICTION ERROR RESULTS ARE SHOWN WHEN STATION A USES
TEMPORAL DATA WITH FOUR DIFFERENT LEARNING ALGORITHMS.

Error Measure LR LASSO SVR DNN
MAE [Wh/m?] 30.7 28.74 23.62 22.87
tMAE (nMAE) [%] 555  5.19 427 413
RMSE [Wh/m?] 58.75 55.78 5273 526
rRMSE_mean [%] 10.61  10.08 9.53 9.5

RMSE_maxmin [%] 5.68  5.39 5.1 5.09

compared with two linear algorithms. In terms of comparing
the two non-linear algorithms, the DNN method has a slightly
smaller error for all metrics compared to the SVR method.
Thus, given temporal data, the observation is that non-linear
algorithms are generally dominant considering all error metrics
and the DNN method outperforms other learning algorithms.

The opportunity for improving the performance of solar
insolation prediction while using the temporal data is limited.
To further improve the accuracy of solar insolation prediction,
learning algorithms can also utilize the spatio-temporal data
of the adjacent stations. Such improvements in insolation
prediction of station A in terms of the decrease in the MAE
and the RMSE are illustrated in Fig. 5. This two metrics are

12
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Fig. 5. Based on TABLE II, the error improvement percentage of using spatio-
temporal data against temporal data is represented for Station A. The adjacent
stations are B, C, and D, and various learning methods are implemented.

selected because they are consistent in their normalized values
presented as the tMAE (nMAE), the rRMSE_mean, and the
rRMSE_maxmin. It is interesting to note that regardless of the
choice of the learning algorithms, the prediction performance
of station A is improved by utilizing spatio-temporal data
from adjacent stations. For example, given the LR method, the
improvements in the MAE are 0.2%, 3.9%, and 5.4% with
adding the spatio-temporal data from stations B, C, and D,
respectively. These improvements are 0.6%, 2.8%, and 6.0% in
terms of the RMSE by adding the same spatio-temporal data.
The LASSO method also shows similar improvements to the
LR method. However, the improvements in error metrics when
spatio-temporal data is utilized are less significant compared
to the LR method.

The improvement in predicting insolation while utilizing
spatio-temporal data is more significant when non-linear learn-
ing algorithms are employed. For example, using the SVR
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method demonstrates a larger improvement compared to LR
and LASSO methods. The improvements in the MAE are
2.6%, 6.2%, and 6.2% with the utilization of spatio-temporal
data from station B, C, and D, respectively. These improve-
ments are 6.0%, 1.2%, and 10.3% when the DNN method is
employed. The improvements in the RMSE are similar.

It is interesting to figure out that the data of which station
has the largest contribution on improving the insolation fore-
cast of station A. Given all learning algorithms assessed by all
error metrics, utilizing the spatio-temporal data for station D
led to the largest improvement in the insolation prediction of
station A. Thus, it is fair to argue that a proper combination of
adjacent stations and learning algorithms results in a consider-
able synergy effect for solar insolation prediction performance.
The role of utilizing spatio-temporal data for station B is
not significant when LR, LASSO, and SVR methods are
used. However, the improvement in the performance is notable
when the DNN method is implemented. For station C, the
largest improvement is achieved by when the SVR method is
implemented. With the spatio-temporal data from station C,
the SVR method with the rMAE of 4% outperforms the DNN
method with the tMAE of 4.08%. Thus, the best learning
algorithm might vary depending on the available data set.
However, the best performance is achieved by utilizing the
spatio-temporal data from station D.

B. Station B

The performance of the presented learning algorithms with
utilizing the temporal data for station B are presented in
Table III, where the prediction error is significantly improved
compared to station A. For example, the rMAE using the LR

TABLE 111
PREDICTION ERROR RESULTS ARE SHOWN WHEN STATION B USES
TEMPORAL DATA WITH FOUR DIFFERENT LEARNING ALGORITHMS.

Error Measure LR LASSO SVR DNN
MAE [Wh/m?] 16.3 16.37 12.77  12.55
rMAE (nMAE) [%] 2.83 2.85 2.22 2.18
RMSE [Wh/m?] 242  23.89 20.32  20.21
rRMSE_mean [%] 421  4.15 3.53 3.51
rRMSE_maxmin [%] 2.31 2.28 1.94 1.93

method is decreased to 2.83% from 5.55% in station A. Here,
the linear learning algorithms demonstrate similar perfor-
mance. Implementing the LASSO method, the MAE is slightly
larger than that in the LR, while the RSME is vice versa. The
regularization of the LASSO method can successfully suppress
large deviations and outliers from actual values, but it also
sacrifices its bias by slightly increasing the average magnitude
of the prediction error metrics. This bias-variance trade-off is
a typical issue of existing predictive models. This not an issue
for the non-linear learning algorithms. Compared to the LR
method, both the MAE and the RMSE are improved using
SVR and DNN methods, where the performance of DNN is
better. Since the non-linear nature of SVR and DNN methods
can enhance prediction performance, non-linear algorithms are
more suitable to deal with temporal data in station B.

The changes in the selected error metrics (i.e., the MAE and
the RMSE) for insolation prediction of station B when utilizing
the spatio-temporal data from adjacent stations are presented
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in Fig. 6. First, given the LR method, both the MAE and the
RMSE are worse than the performance of utilizing temporal
data only. Specifically, the MAE demonstrates -12.9%, -5.9%,
and -8.8% performance degradation when adding spatio-
temporal data for station A, C, and D, respectively. This is
worse once the RMSE is considered as those degradation are
-39.3%, -7.2%, and -13.7%. Implementing the LASSO method
also unfolds similar degradation in the performance. Thus,
for station B, utilizing the spatio-temporal data from adjacent
stations fails to deliver any improvement by implementing the

two linear algorithms.
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Fig. 6. Based on TABLE III, the error improvement percentage of using
spatio-temporal data against temporal data is represented for Station B.
The adjacent stations are A, C, and D, and various learning methods are
implemented.

Next, the impact of employing non-linear learning algorithms
to explore the potential improvements from utilizing the
spatio-temporal data is investigated. For the SVR method, the
MAE indicates -7.3% and -5.3% degradation in performance
once utilizing the data from station A and D, but 5.5%
improvement when the data from station C is utilized. Simi-
larly, the RMSE represents -23.2% and -6.8% degradation in
performance once utilizing the data from stations A and D, but
9.6% improvement in performance once utilizing the data from
station C. Once the DNN method is implemented, the MAE
is improved 14.1% once utilizing the data from station C, it
indicates -6.2% and -5.3% degradation in performance once
utilizing the data from station A and D. Results considering the
RMSE are also similar. Unlike the linear learning algorithms,
implementing SVR and DNN led to an increase in the per-
formance of insolation prediction for station B once utilizing
the data from station C. Hence, in terms of contributions
from adjacent stations, station C contributes to improving the
prediction error of station B when SVR and DNN methods are
utilized. However, both station A and D caused a depreciation
in the prediction performance of station B regardless of learn-
ing algorithms. Interestingly, by contrast with station A, adding
spatio-temporal data does not always lead to performance
improvement. The observation is that prediction errors depend
on not only linear/non-linear algorithms but also the particular
spatio-temporal data sets from adjacent stations. Thercfore, it
is necessary to determine the appropriate combinations of non-
linear algorithms and spatio-temporal information to obtain
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performance gain in prediction errors. Here, the best insolation
prediction is achieved by integrating the spatio-temporal data
from station C. The best performing algorithm in terms of the
RSME is the SVR method, while it is the DNN method in
terms of the MAE.

C. Station C

The performance of learning algorithms based on various
error metrics is presented in Table IV, where the temporal
data of station C is used for solar insolation prediction. The

TABLE IV

PREDICTION ERROR RESULTS ARE SHOWN WHEN STATION C USES
TEMPORAL DATA WITH FOUR DIFFERENT LEARNING ALGORITHMS.

Error Measure LR LASSO SVR DNN
MAE [Wh/m?] 3528 3941 24.5 22.02
rMAE (nMAE) [%] 6.93 7.74 4.81 4.33
RMSE [Wh/m?] 53.21 55.05 4393 41.36
rRMSE_mean [%] 10.45 10.81 8.63 8.12
rRMSE_maxmin [%] 5.32 5.5 4.39 4.13

interesting observation for the two linear models is the better
performance of the LR method compared to the LASSO
method. Thus, the bias imposed by the regularization in the
LASSO method exacerbates the solar insolation prediction.
This example demonstrates that although the LASSO method
is generally suitable for feature sclection and regularization
purposes, it is not always the case that considering regular-
ization will enhance the performance. This is because of the
incorrect penalizing of substantively essential features. Similar
to station A and station B, the performance of non-linear
learning algorithms is better than linear ones when utilizing
the temporal data.

The improvements in the performance of learning algorithms
when station C utilizes spatio-temporal data from adjacent
stations are illustrated in Fig. 7. Despite station B, the overall
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Fig. 7. Based on TABLE 1V, the error improvement percentage of using
spatio-temporal data against temporal data is represented for Station C.
The adjacent stations are A, B, and D, and various learning methods are
implemented.

solar insolation forecast errors of station C are generally
improved with the utilization of the spatio-temporal data from
adjacent stations. Nevertheless, the one exception is when the
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LR method is implemented, where spatio-temporal data from
station A leads to -0.27% degradation in terms of the RMSE,
while according to the MAE it led to an improvement in
insolation prediction. This is because of the difference like
error metrics. While the spatio-temporal data can reduce the
average magnitude of the errors in the prediction, it may also
add a few outliers which had an adverse impact on the increase
in the RMSE. For the insolation prediction of Station C, the
spatio-temporal data from station A is an interesting example.
This illustrates the benefit of regularization considering the
bias-variance trade-off, where the LASSO method presents a
larger improvement compared to the LR method. Moreover,
the most significant improvement is a 13.5% improvement in
the MAE when the LASSO method is employed with spatio-
temporal data of station D. However, the improvement brings
down the MAE to 34.87 which is still larger than 32.06 of
that when the LR method is employed. Therefore, utilizing the
spatio-temporal data mitigated the adverse impact of the bias
imposed by the LASSO method compared to the LR method.

Utilizing the spatio-temporal data led to an improvement in
the performance of SVR and DNN mcthods. However, the
contributions of the spatio-temporal data highly depend on
learning algorithms, the adjacent station, and the selected error
metrics. Consistent with linear models, utilizing the spatio-
temporal data from station A has the smallest improvement
compared to other adjacent stations. However, while the
spatio-temporal data of station B has the largest impact on
the improvement when the DNN method is implemented,
the improvements in the SVR method highly depend on
the choice of the error metric. If the MAE is taken into
consideration, utilizing the spatio-temporal data from station B
contributes the most to improve the insolation prediction,
and the contribution of data from station A is more than
station D. However, the most improvement is achieved by
utilizing the spatio-temporal data from station D when the
RMSE is considered. Therefore, it is not straightforward to
call that the data from which station is contributing the most
to improve the insolation prediction when the SVR method is
implemented. However, the best performance is captured when
spatio-temporal data from station B is utilized for insolation
prediction in station C with the DNN method. Contrasting this
with the best performance of station B reveals that sharing the
spatio-temporal data between these stations is very useful for
improving the insolation prediction.

D. Station D

Various metrics for prediction error of given learning algo-
rithms with temporal data of station D is illustrated in Table V.
The error metrics for LR and LASSO methods are very close.

TABLE V

PREDICTION ERROR RESULTS ARE SHOWN WHEN STATION D USES
TEMPORAL DATA WITH FOUR DIFFERENT LEARNING ALGORITHMS.

Error Measure LR LASSO SVR DNN
MAE [Wh/m?] 30.8  31.37 20.02 19.71
rMAE (nMAE) [%] 5.42 5.52 3.53 3.47
RMSE [Wh/m?] 4828 479 424 41.34
rRMSE_mean [%] 8.5 8.43 7.46 7.28
rRMSE_maxmin [%] 4.5 4.46 3.95 3.85

For example, with employing the LASSO method, there is a
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slight error increase of 0.57 in terms of the MAE and the error
decrease of 0.38 in terms of the RMSE. This is because of the
difference in LASSO and LR methods given the regularization
in the LASSO method, particular features on temporal data
are penalized to eliminates outliers or large deviations from
actual values, where this leads to the increase in the overall
magnitude of the errors. To deal with bias-variance trade-off,
non-linear models are also examined here. The error metrics
presents smaller prediction error when implementing SVR and
DNN methods compared to the implementation of LR and
LASSO methods. Those error metrics are also very close.
However, employing the DNN method presents a slightly
smaller error.

The improvements in insolation prediction of station D
utilizing the spatio-temporal data from the adjacent station are
described in Fig. 8. Here, the spatio-temporal data of station C
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Fig. 8. Based on TABLE V, the error improvement percentage of using spatio-
temporal data against temporal data is represented for Station D. The adjacent
stations are A, B, and C, and various learning methods are implemented.

has the largest contribution to improve the performance of
insolation prediction given all algorithm and all error metrics.
It is observed that the spatio-temporal data from station A is
leading to a decreased in the performance of the LR method
as well as the DNN and SVR methods considering the RMSE.
It is not decreased when the LASSO method is employed
due to the tendency of the LASSO method to remove outlier
that will contribute to a larger value of the RMSE. It is very
interesting to note that the spatio-temporal data from station D
was the largest contributor to improve the performance of
station A, while data from station A is not helpful for the
insolation forecast of station D. The improvement in insolation
prediction is more significant when implementing SVR and
DNN methods compared to implementing LR and LASSO
methods. For example, implementing the SVR method, the
MAE indicates prediction improvements of 1.0%, 2.0% and
6.1% when the spatio-temporal data from stations A, B, and C
are utilized, respectively. Similarly, when the DNN method
is employed, the MAE indicates prediction improvements of
1.8%, 0.7% and 6.0% when the spatio-temporal data from
stations A, B, and C are utilized, respectively. Thus, the best
performance is achieved once the DNN method is imple-
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mented and spatio-temporal data from station C is utilized.
The role of station C points out that combinations of specific
information and particular algorithms can produce a significant
effect by exploring potential improvements.

E. Summary

The summary of the best-performing algorithms given tem-
poral and spatio-temporal data as well as the most important
adjacent station and the algorithm with the most improvement
in performance with the utilization if spatio-temporal data is
given in Table VI. Although the implementation of the DNN

TABLE VI
SUMMARY OF THE BEST COMBINATION OF LEARNING METHODS AND
IMPORTANT ADJACENT STATIONS FOR EACH STATION, RESPECTIVELY.

Combination A B C D
The best method with DNN DNN DNN DNN
temporal data only
The largest positive gain of  DNN DNN LASSO SVR
method and specific station & D & C & D & C
The best combination of DNN DNN DNN DNN
method and important station & D & C & B & C

method would generally outperform other learning algorithms,
there are interesting exceptions to explore. For example, for
station B, the best choice of learning algorithms utilizing the
spatio-temporal data could be the DNN method or the SVR
method depending on the choice of error metric. In addition,
the contribution of the spatio-temporal data in improving the
performance of the learning algorithm is different. Therefore,
when implementing a specific algorithm, the largest improve-
ment gain does not necessarily mean the best performance
among learning algorithms. Also, the superiority of one algo-
rithm by utilizing the spatio-temporal data of one station does
not necessarily mean that it would be the best algorithm for
all stations.

To increase the prediction performance further, one may
choose the ensemble (hybridization) methods that combine
multiple learning methods to generate better predictive per-
formance than the results obtained from any of learning
algorithms alone [15], [16]. Nevertheless, if the spatial infor-
mation, per se, is not beneficial to a specific weather station,
the ensemble methods would not be effective. This happens
when station B utilizes station A and station D which led to
worse prediction errors. Finally, one may reduce the prediction
errors by incorporating learning algorithms into the solar
insolation stochastic process, e.g., the probability distribution
of solar power can be modeled by the Gaussian distribution
and beta distribution [26]-[28]. While a typical distribution
can be constructed by collecting the realized samples over
some period of time, either minutes, hours, days or weeks, a
conditional distribution can be modeled by predicted value of
solar insolation, calendar date, and ambient conditions [28].
Thus, combining distribution sets and learning algorithms
potentially enables the proposed prediction techniques to be
more accurate, which in turns can predict unbiased solar
insolation values.
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VI. CONCLUSIONS

The impact of various learning algorithms for solar inso-
lation prediction is assessed by utilizing the available data in
spatial proximity. Temporal and spatio-temporal information
is utilized for linear and non-linear learning algorithms for
solar insolation prediction. Multiple error metrics highlighted
that the improvement achieved by utilizing the spatio-temporal
data depends on the specific location and the employed al-
gorithms. The best way to describe the accuracy of a solar
prediction depends on the combination of spatio-temporal data
and learning algorithms. The largest positive gain of a certain
algorithm for spatio-temporal of the target station did not
necessarily mean that it would be the best algorithm for other
stations. Therefore, for each location, a proper combination of
non-linear algorithms and spatio-temporal information should
be obtained to ensure the best performance improvement in
prediction errors by utilizing spatial proximity data. By doing
80, it is possible to determine a specific set of spatial proximity
data to enhance the solar insolation prediction. Since our
proposed methods are scalable for different time resolution
(sampling rate), the future research is to further improve the
prediction performance by using multiple data sets such as
high temporal and spatial resolution information and ambient
conditions (air temperature, wind, and gust speed).
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