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Abstract—A total 19% of generation capacity in California is
offered by PV units and over some months, more than 10% of
this energy is curtailed. In this research, a novel approach to
reduce renewable generation curtailments and increasing system
flexibility by means of electric vehicles’ charging coordination
is represented. The presented problem is a sequential decision
making process, and is solved by fitted Q-iteration algorithm
which unlike other reinforcement learning methods, needs fewer
episodes of learning. Three case studies are presented to validate
the effectiveness of the proposed approach. These cases include
aggregator load following, ramp service and utilization of non-
deterministic PV generation. The results suggest that through this
framework, EVs successfully learn how to adjust their charging
schedule in stochastic scenarios where their trip times, as well
as solar power generation are unknown beforehand.

Index Terms—Reinforcement learning, Electric Vehicle, Cur-
tailment Reduction, Dispatchability, Scheduling.

NOMENCLATURE

Variables
at Action at time t
pboughtt Total amount of energy bought from electricity grid

at time t by EV fleet
p(i,t) Charging power of the EV indexed by i at time t
rt Reward of taking an action at time t

Parameters
D Total number of simulation days
Kmax Maximum number of iterations
PVt PV output at time t (kW)
µD, µA Mean departure and arrival time for vehi-

cles of EV fleet (hr)
µdi , µ

a
i Mean departure and arrival time for single

EV indexed by i (hr)
σD, σA Variance of departure and arrival time for

vehicles of EV fleet (hr)
σdi , σ

a
i Variance of departure and arrival time for

single EV indexed by i (hr)

Sets
A Set of actions
D Set of days
I Set of all EVs
S Set of states
T Set of time steps
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I. INTRODUCTION

DUE to their environment friendly nature and unlimited
sources of supply (e.g. sunlight and wind), renewable

generation units are increasingly being integrated into the
power system. Based on the statistics provided by U.S. Energy
Information Administration, currently, renewable resources
account for 19% of total electricity generations of the United
States and are expected to double their share among generation
fleet (i.e. natural gas, renewable, coal and nuclear) in 30 years,
rendering them the major sources of energy in United States
by 2050 [1]. Among renewable generations, currently wind
turbines are the pioneer type, being responsible for 38% per-
cent of renewable generation fleet in the United States. Solar
generations currently provide 15% of renewable generation
output, but it is projected that photovoltaic (PV) resources will
contribute 46% of total renewable generation by 2050, which
means a considerable 18% of total electricity generation of
U.S. will be provided solely by PV units. California is the
second largest consumer of electricity energy in the United
States and in 2018, California ranked first in the nation as a
producer of electricity from solar resources [1]. In 2018, large
and small scale solar PV and solar thermal provided 19% of
California’s net electricity generation.
Along with the several benefits of PV integration, system oper-
ators are facing new challenges risen as a result of introducing
substantial amounts of PV, such as over-generation which
leads to periods of large amounts of curtailment. Primarily,
curtailment is executed to reach supply-demand balance and
avoid over-voltage instances in the network [2]. Although an
easily accessible solution, curtailing is a waste of resources
which diminishes the investor confidence [3]. Also to reach a
higher utilization of generation fleet, it is desirable to reduce
PV generation curtailments.
According to the data provided by California Independent

System Operator (CAISO), 10% of the state’s total PV gen-
eration has been curtailed in the first four months (January
through April) of 2020 [4]. The PV output curves for a number
of selected days in April of 2020 for CAISO are portrayed in
Fig. 1. As can be seen from this figure, for 10th of April,
less than 1% of PV output was curtailed. One reason is that
for this day, the peak of supply did not exceed the peak of
demand as the weather was not clear and PV output has not
reached its full capacity. The amount of curtailment for 8th of
April exceeds 5% and as the total PV output is increased, like
for 14th and 21st of April, the curtailment is also increased
dramatically, adding up to 12.2% and 17.7% for these days,
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Fig. 1. Comparison of California PV output before and after curtailments

respectively. Therefore, it is important to come up with ways
to address curtailment reduction of the PV resources, which
as highlighted earlier, are the fastest growing generation units
of any type.

The dramatic increase in the share of renewable energy
will cause more power curtailments which negatively affects
the value and cost of renewable generation units. Insufficient
transmission, congestion, and excessive supply are counted
as the major causes of curtailments [5]. Several practical
measures are being taken by the industry to reduce curtail-
ments. In Colorado, Automatic Generation Control (AGC) is
used to deal with the curtailments in wind generation [6]. To
mitigate curtailments, a market approach which CAISO has
implemented is negative pricing during oversupply periods [7].
Authors in [8] count enhancement of operational reliability,
generation flexibility and maintenance plans of renewable
energy generators as solutions to reduce curtailed electric
energy from technological viewpoint. Another practical means
of dealing with curtailments reduction is transmission ex-
pansion and augmenting interconnections, which is currently
being practiced by ISO New England, Midcontinent ISO
and PJM Interconnection [7]. Storage technologies [3], and
utilization of curtailed resources for ancillary services such
as frequency regulation [7] are also counted as measures to
reduce curtailments.

Improved forecasting and economic dispatch [9], [10], and
storage technologies [11]–[15] are among approaches used
by researches to address the curtailment issue. To offer more
operational flexibility by reducing curtailments in a microgrid
with high penetration levels of renewable generation, the
authors of [14] have investigated energy storage solutions.
They show that compared to a case with no storage, adding
storage devices with only 4 hours of daily operation can reduce
the curtailments from 16% to 10%. By considering congestion
and load mismatch as reasons for wind turbine curtailments,
authors in [15] have proposed a joint operational scheme for
wind power generation system with pumped hydro energy
storage.
In this paper, we have introduced a management scheme based
on Electric Vehicles (EV) cooperation to schedule the charging
of them to reduce PV curtailments. EVs of any type have been
experiencing a surge in demand due to reasons such as no
pollutant productions, technological advancements leading to
reductions in price and increased range, government policies
encouraging customers, etc. It is estimated that the combined
share of non-electric vehicles in the United States will fall
from the current 94% to 81% by 2050 [1]. If done properly,
EV fleet management not only prevents the potential negative
impacts of EV charging on the power grid operation, but also
could be beneficial for both the owners and operators.
One of the challenges of problem settings containing EVs is
the randomness of their behavior such as arrival and departure
times, and reinforcement learning (RL) algorithms are capable
of coping with these problems. RL is a promising tool for
problems where the system model is large, complex and not
determined and is increasingly being implemented in power
system applications. In this branch of machine learning, the
learning takes place based on the interactions between the
environment and the agent. RL offers solutions for stochastic
sequential decision making problems and various research is
being conducted on RL applications in power systems [16].
The applications include but are not limited to energy manage-
ment [17], [18], demand response [19], electricity market [20],
and operational control [21]. The common learning algorithms
utilized in RL are Q-Learning [22], fitted Q-Iteration [23], and
Deep Reinforcement Learning (DRL) approaches [24], [25].
Authors in [26] have presented a multi-agent framework to
charge EV batteries with the objective of reducing transformer
overloads. In this study, RL agents learn two policies, one
is a selfish one that tends to increase local reward and the
collaborative policy, which looks at other agents’ preferences
as well. In another study, the charging management problem
of EVs has been addressed by a DRL algorithm so as to reduce
the overall travel time and charging costs at electric vehicle
charging stations [27]. To deal with the uncertainties, first a
deterministic model is extracted which then is used to attain
transition probabilities. The charging/discharging schedule and
location of EVs are extracted in [28] through a mobility
aware control algorithm that takes EV mobility, SOC, and
demand of the system into consideration to solve RL with
the value iteration method. A DRL model is proposed in [29]
to acquire the optimal charging/discharging schedules of EVs
to ensure full charging of EVs while taking the stochasticity
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of electricity prices into account.
The unpredictable variables such as traffic conditions and elec-
tricity prices inherent to an EV scheduling problem are dealt
with a model-free approach in [30]. It is shown the desired
solution can be obtained by adaptively learning the transition
probabilities. A multi-agent DRL approach is proposed in [31]
to handle various EV charging stations with varying dynamics.
Another model for EV charging scheduling problem of a park-
and-charge system which aims to minimize battery degradation
costs can be found in [32]. The problem with these methods is
their dependency to large scale data, and with not big enough
experience samples these approaches will not succeed.

As discussed, a variety of problems in power system ap-
plications have been addressed with Q-learning and DRL
methods. A major shortcoming of Q-learning is that for the
settings where state and action spaces are not finite or small,
the Q value can no longer be tabularized [23]. On the other
hand, although effective in many applications because of the
intrinsic power of neural networks in approximating functions,
DRL does not become much of help when the available dataset
size is not very large. Thus, in a problem setting with limited
sets of data and large/sparse state action tuples, fitted Q-
iteration algorithm suits best.
To reach the ideal day-ahead charging plan of an EV fleet,
a heuristic plan is proposed in [33]. With the objective of
reducing costs, the beforehand unknown charging flexibility
of EVs, which is dependent on various factors such as plug-in
times, power considerations, and battery specifications are ef-
fectively learned in this work by batch reinforcement learning.
A demand response model-free approach to jointly coordinate
the charging stations in a network, a batch RL algorithm
has been introduced in [34]. Instead of considering EVs as a
whole, a novel method is presented here to control single EVs
and it is shown that a suitable optimal policy compared to the
benchmark all knowing oracle can be achieved by this method.
The flexibility of supply and storage devices in a multi-carrier
energy system has been investigated in [35]. This sequential
decision making process dependent on stochastic features such
as weather and electricity demand has been tackled with a
fitted Q-iteration algorithm. Results show that without fully
knowing the model of the system, an optimal interaction of
system carriers can be achieved.
The energy management problem of a microgrid is studied
with the batch Reinforcement Learning method in [35]. With
the objective of maximizing the usage of the connected PV
device, the control policy of a storage unit is obtained through
a data-driven fitted Q-iteration. In another study, a demand
response approach for minimizing the charging costs of a
single plug-in electric vehicle is proposed [19]. Here, different
charging scenarios are fed to the regression model as historical
data with non-deterministic energy prices. The results support
the effectiveness of batch RL algorithm in the reduction of the
charging prices.
In a nutshell, in the presented work, an EV fleet is utilized
as a means of offering flexibility, rather than relying on
conventional methods such as storage and market solutions.
The main contribution of this work is to present a novel
approach which reduces renewable generation curtailments by

means of electric vehicles’ autonomous charging coordination.
Besides that, an RL framework is successfully implemented
in the presence of uncertainties in PV generation such that
the curtailment reductions are mitigated. Finally, this problem
setting is also applied to a DRL algorithm and it is verified
that with the fitted Q-iteration algorithm, Q-function can be
learned over only a limited number of simulation days rather
than prolonged training periods, which is the case in some
other DRL algorithms.
The problem of scheduling EV charging can be divided into
two steps. First, the environment is modeled and then, fitted Q-
iteration algorithm is implemented. Section II is designated to
discuss the problem formulation by introducing some concepts
in sequential decision making problems and RL; while in sec-
tion III the solution methodology and algorithm are explained.
The results for three case studies, as well as performance
comparison of our algorithm vs. a DRL algorithm are analyzed
in section IV. Eventually, in section V, the motive and findings
of this research are recapitulated with some suggestions on
future work.

II. PROBLEM FORMULATION

In this section, the environment setting modeling as a finite
Markov Decision Process (MDP) is explained. Later on, the
formulations used in this work to represent and capture the
problem are discussed in detail.

A. Finite Markov Decision Processes

In sequential decision making problems, actions impact both
the outcome and the next state of the system. MDPs are a
formalized way to present these problems. In a finite MDP,
rewards and states depend only on the previous state and
action. MDPs are defined with state space S ⊂ Rd, action
space A ⊂ R, transition probability p(st+1 | st, at) which
defines the dynamics of the system, and reward function given
as R(st, at). Fig. 2 shows how the agent and the environment
interact in an MDP setting.

Fig. 2. The agent-environment interaction in MDPs

According to Fig. 2, the agent at each state observes the
current state and reward signals of the system, i.e. st and rt,
respectively. The agent could be an aggregator who aims to
match the demands of EVs it controls with its bought energy,
or a PV owner who tries to maximize the utilization of PVs.
The agents sends the action signals, at, to the environment,
which could be the aggregate charging power of EV fleet
or total PV generation in these examples, and wait for the
environment’s response to these actions at the next time step.
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B. Environment Setting

As mentioned in the previous part, the actions are directed to
the environment at each state, and the environment response
is observed as the next state and reward. EV owners are a
source of uncertainty in the system as their behavior is not
deterministic. It is assumed that each EV owner departs home
in the morning, reaches the charging station at the workplace,
then heads back home in the evening and connects to the
charger in the home to attain a desirable level of charging
by the next morning. In order to achieve a better estimate of
the EV fleet behavior, we could differentiate between types
of EVs, different battery sizes, days of the week (workdays
or weekends) or even seasons of the year. However, as the
contribution of this work is not affected by any of these, we
have considered same vehicle specifications for all of the fleet
vehicles and have not distinguished daily patterns.
For each EV owner, mean of arriving and departure time
are derived from the normal distribution N (µD, σD) and
N (µA, σA), respectively. Next, for each day, the departure
and arrival hours of each EV are drawn from the normal
distributions N (µdi , σ

d
i ) and N (µai , σ

a
i ), respectively. Also, in

addition to the uncertainty of EV departure and arrival times,
the SOC of each EV when reaching a destination is also an
stochastic variable.
The state of the environment at each time step is an n-tuple
encapsulating the essential characteristics of the model often
regarded as features to reach the best learning experience.
Feature selection is one of the most important aspects of
problem solving and can impact accuracy as well as the
complexity of the system. For this problem, if the states were
to be defined according to the SOC and availability of single
EVs, that would have led to a gigantic state space size. The
same applies to actions, thus in order to reduce the state action
space size, state elements have been introduced so they contain
vital information signaling the overall state of the aggregated
cars in EV fleet. The charging stations are presumed to be able
to measure the SOC of connected EVs and with appropriate
communication links, the state can be considered observable at
all times. It is assumed that after connecting to the charging
station at each instance, the drivers set the desired time for
leave, so that information is also known. By knowing the
battery specifications such as charging rate and capacity, the
charging time required for each EV can be calculated at any
time.
The set of all EVs in the system are represented with I =
{1, 2, .., N}, while the set of all available EVs, C, consists of
EVs ∈ I which are stationary, i.e. connected to the charging
station. The set of all available EVs for charging and the set of
all critical EVs, denoted respectively by V and U , are defined
in (1) and (2).

V = {EVi} : i ∈ C & SOCi < 100 (1)

U = {EVi} : i ∈ V & tai − tri ≤ δc (2)

In (2), tai and tri are the available time window for charging
of EVi and the required total time that is needed for EVi
to reach full charge, respectively, and it is assumed they are

known for all EVs that are connected to charging stations. The
relation between tai and tri is not forced directly. However,
for the EVs that are connected at home, the algorithm works
in a way that tai is always greater than tri . The reason is that
according to (2), if the difference between tai and tri for a
vehicle reaches δc, that EV is moved to the set of critical
EVs. This means this particular EV is charged by force at the
next control step, and its tri is reduced. At every control step,
EVs in U will be charged through “forced actions”, assuring
all EVs will reach 100 % SOC before desired time. It is also
worthwhile to mention that the problem is defined in such a
way that it is feasible for each EV to become fully charged
during the night. EV technology has some limitations and the
waiting time for full charging is on top of the list. The idea
of “in motion charging” of EVs is an attempt to circumvent
this limitation, and is further discussed in our previous works
[36], [37]. Wireless charging allows EV owners to leave
before EVs are reached full charged status, as they can be
charged even during the trip.
nmax and nmin are the cardinality of V and U at each time
step, respectively. nmax sets the upper limit for the number
of EVs that can be charged at a certain time step, while
nmin is equal to the minimum number of EVs that must be
charged at a certain time. The set of feasible actions at each
time, Ht is defined in (3). During the learning process at
every time step, the agent selects its next action from this
set. In [26], whether the EV is available for charging or not
is considered in the state space. In another application for
frequency control with EVs’ batteries, the number of vehicles
that have SOC levels below (above) minimum (maximum)
acceptable SOC level are also presented in the state space
[38]. In our problem, the overall availability of the EVs is
estimated by presenting nmin and nmax to the state tuple.

Ht =

{nmin : nmax} , nmax > 0

0, nmax = 0
(3)

The total amount of time needed for all EVs to be fully
charged, Tt, is another constituent of the state and is acquired
as shown in (4). Authors in [33] have used the variable Ereq in
the state tuple of the system. In our work, is assumed that all
of the batteries have the same characteristics, and the EVs are
charged (discharged) at same rates. This means that the total
amount of energy which is needed for all of the EVs to be
charged is proportional to the variable Tt. Hence, this variable
will provide an accurate measure of the overall average SOC
of the fleet.

Tt =
∑
i∈I

tri (4)

Freedom is the most important variable in the presented prob-
lem formulation, as four features of the state are dependent
on it. The freedom of each EV at each time is calculated as
given in (5).

Fr(i,t) =


tai−t

r
i

tai
, i ∈ V

1, i ∈ I \ C
(5)
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According to (5), the freedom of EVi is a number between
[0, 1], and the lower the freedom of an EV is, the less margin
is available for delaying its charging. We have concluded that
placing four representations in states which are acquired from
the freedom of EVs, i.e. {Frave, F r2, F r5, F r10}, will go a
long way toward learning. The freedom variable presented in
this work is a measure of how much each vehicle is close to
its deadline. One method to reduce the state space size is the
concept of grouping vehicles [39]. Vehicles are grouped based
on their temporal proximity to their deadline. The freedom
percentiles allocated in the state tuple serve as boundaries for
grouping EVs. Here, Frave is the average freedom of all EVs,
and Frx is the x percentile of freedom. In this work, the
features that lead to the best learning have been chosen by
experiments and are presented as an 8-tuple.
The state of the system at each time is a vector constituted with
scalars as st = (t, nmin, nmax, Tt, F rave, F r2, F r5, F r10).
Here, t is the time step of the day. The only decision variable
in this problem is at, i.e. the number of EVs which are to
be charged at each time step. In the solution methodology
section, it is explained how st and at work together to obtain
the Q-function. At each step, the actions of the system are
done based on the priority of the EVs, which is obtained as
given in (6), and ensures that all EVi ∈ C are charged at the
next control step.

Pri = sort(tai − tri ) i ∈ V (6)

One defined reward is such that the goal of the EVs is to
follow a reference power which is known beforehand. The
reference function could be any arbitrary curve. As the goal
in this work is to demonstrate how EVs can be utilized to
offer flexibility, the performance of EVs when set to follow
a predetermined curve is discussed in the results section. The
reward, in these cases, is defined as the negative of squared
power mismatch between net charging power of EVs and the
reference power, as in shown in (7). Therefore, the reward
will always be negative and agent tries to always reach smaller
negative rewards. It is also noteworthy that in the case studies,
a problem setting is selected where the pre-purchased energy
is roughly equal to the amount of daily energy that vehicles
consume. That justifies the square usage in reward definition
as it is crucial that EVs stay as close to the reference curve
as possible at all times.

rt = −(P reft −
N∑
i=1

p(i,t))
2 (7)

Another way to define the reward function is calculated as the
amount of charging power consumption of the EV fleet which
is coinciding with the PV generation. Based on (8), If any
charging happens outside from the PV generation, no positive
or negative reward is designated.

rt = min

{
PVt,

N∑
i=1

p(i, t)

}
(8)

It was mentioned that the state is an 8-tuple representation
of the whole set of EVs. However, with non-deterministic PV

outputs, measures need to be taken to improve state repre-
sentation so the regression function can have better estimates
of the stochastic nature of PV generations. To this end, two
indicators I1t and I2d are introduced to the st. These features
have to be chosen carefully in order to improve the learning
experience and after several experiments, we have come up
with I1t as shown in (9).

I1t =
∑

k∈(t−60:δc:t)

PVk (9)

It is assumed that the power output of PV units is known for
the past time steps of the day, and (9) defines I1t to be equal
to the summation of PV generation over the past hour. I2d is
also a number that is assigned for each day and is obtained
based on the predictions of the weather. It can have 3 values,
with 3 for a clear day and 1 for a cloudy/rainy day with low
solar irradiation. In the next section, a framework to solve the
general environment settings with arbitrary behavior of EV
owners, reference power and PV capacity is introduced.

III. SOLUTION METHODOLOGY

As suggested earlier, fitted Q-iteration is chosen as the
approach to solve the RL problem in this study. Basically,
the optimal solution of an MDP is acquired by maximizing
the discounted sum of the rewards. The discount rate, γ,
determines the present value of future rewards: a reward
received k time steps in the future is worth only γk−1 times
what it would be worth if it were received immediately. At the
time t, the value of taking action at at state st is denoted by
Q(st, at) and is calculated according to Bellman’s optimality
equation as stated in (10).

Q(st, at) = R(st, at) + γ max
at+1∈Ht+1

Q(st+1, at+1) (10)

Based on (10), the action value function at each state is the
sum of immediate reward at that state plus the maximum
achievable action value at the subsequent state, for all feasible
actions at time t + 1. The procedure of Q-iteration used
for solving the problem is presented in Algorithm 1. This
algorithm takes the discount factor (γ), the maximum number
of simulation days (D), the maximum number of iterations
(Kmax), action and control step size (δs and δc, respectively),
the initial policy (π0) and the target (ε0) for explorer as inputs;
while returning the action value function as output. At the
initializing step, the variables for day and time indices are set
to zero and the sets containing batch samples for each day
(J ) and the whole simulation period (F) are pre-allocated.
Line 2 of Algorithm 1 asserts that for the initial day (d = 0),
the actions are acquired based on the initial policy, i.e. π0(st).
The preset policy is used only for the first day, and we have
implemented the random policy for this purpose where actions
at each state are chosen randomly from the feasible set of
actions, Ht. For the rest of the days, the actions are executed
at time steps for each δs minutes; however, it is only at control
time steps where mod(t, δc) = 0 that new actions are chosen.
According to line 5, the best action is first obtained from
the optimal action value function. Then based on line 6, the
action at each time step is chosen by the explorer. To this end,
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Algorithm 1: Fitted Q-Iteration Algorithm for EV
Fleet Autonomous Charging Scheduling Problem

Input : γ,D,Kmax, δs, δc, π0, ε0
Output: Q∗D(st, at)
Initiate: F ← Ø,J ← Ø, t← 0, d← 0

1 while d < D do
2 Initiate first day based on π0
3 for t = 0 : δs : 1440 do
4 if mod(t, δc) = 0 then
5 a∗ ← argmaxat∈Ht

Q∗d(st, at)
6 at = Explorer(a∗,Ht, ε)
7 st+1, rt ← env(st, at)
8 J = J ∪ (st−δs, st, rt, at,Ht)
9 else

10 at ← a(t−δs)
11 st+1, rt ← env(st, at);
12 end
13 end
14 F ← F ∪ J
15 d← d+ 1
16 Q0

d+1(st, at)← Ø
17 for k = 1 : Kmax do
18 for l = 1 : |F| do
19 X l ← (st, at)
20 Y l ← rt + γmaxat+1∈Ht+1 Q(st+1, at+1)
21 end
22 Qk+1

d+1(st, at)← Regress(X l, Y l)
23 end
24 Q∗d+1(st, at)← QKmax

d+1 (st, at)
25 end

we have implemented the ε-greedy exploration method, where
optimal action is acquired as shown in (11) and (12).

ε = max {ε0, 1− c0d} (11)

at =

 a∗, ε ≤ ρ

random(Ht), ε > ρ
(12)

A linear ε-greedy method is selected here, where according
to (11), the ε curve is a line decreasing from 1 to ε0 with a
slope equal to c0. The action at each step is then extracted
based on (12), where ρ is a random number between 0 and 1.
This equation means with the probability of 1 − ε, action at
each time step is set to the optimal action returned from the
action value function, and with the probability of ε, actions
are chosen randomly from the feasible action set. In lines 7
and 8 of Algorithm 1, the chosen action is forwarded to the
environment and the pair (st+1, rt), representing next state
and reward for taking action at is returned. Then, the set of
batch experiences is updated.
At the end of each day, set F , which has the total simulation
experiences so far, is updated. Then through an iterative
procedure as indicated in lines 17-24, input and output data are
fed to the regression function. Finally, the optimal action value
function estimator which is used at line 8 for calculating the
optimum action choice is set to be equal to the approximator
function of the last iteration. To achieve an estimate of

convergence, the factor convergence rate is introduced in (13).
Ckd is the learning convergence for day d at iteration k, and
is a measure to indicate how best action-value function at
each iteration performs compared to the previous iteration.
The mean of best action value is denoted by Q.

Ckd = (Q
k+1

d −Qkd)2/Q
k

d

2
(13)

The most important element of the fitted Q-iteration algorithm
is the regression function. At the end of each epoch, the data
from environment is fed to the regression function to acquire
an approximation of the true Q values. Also, the agent depends
on the regression function for choosing actions at each step.
Some regression methods that are used by different authors
include but are not limited to neural network approximators,
multi layer perceptrons, support vector machines, decision
trees, and random forests. The fitted Q-iteration algorithm
requires fitting of any arbitrary (parametric or non-parametric)
approximation architecture to the Q-function with no bias on
the regression function.
In this work, we follow the path of the original fitted Q-
iteration algorithm, which made use of an ensemble of de-
cision trees. [23]. In the search for a desirable regression
algorithm which is able to model any Q-function, tree-based
models are found to offer great flexibility, meaning they can
be used for predicting any type of Q-function. They are non-
parametric, i.e. they do not need repeated occasions of trial
and errors for tuning the parameters. Tree based models are
also computationally efficient and despite some other methods,
with the increase in problem dimensions, the computation
burden of tree based methods does not increase exponentially.
Among tree based models, we opted for random forests.
Random forest are created by putting together various decision
trees. At each step, random forest algorithm selects a random
subset of features. That is why this method is robust to
outliers. The convergence of tree based regression for fitted
Q-iteration is investigated in [23]. All in all, they are a great
tool for estimating a priori unknown shaped Q-functions with
satisfactory performance.

IV. ILLUSTRATIVE EXAMPLE

In this section, several case studies are presented to illustrate
the merit of the presented approach. Various settings are sim-
ulated and results for each case are discussed. The parameters
used for simulations are as follows: γ = 0.95, Kmax = 25,
δs = 10 (min), δc = 20 (min), ε0 = 0.05, and c0 = 2.5. Total
number of 100 EVs are considered in the simulations, with
the battery ratings of 5KW maximum power and 16.67KWh
capacity.

A. Case 0 - Aggregator Load Following

In this case, it is assumed that an aggregator already
bought a specified amount of daily energy (purchased power
agreement), and EV fleet is used to match the reference power
with its charging behavior. For this case, D is considered to
be equal to 75, and reward function (7) is used. Fig. 3 shows
the daily reward and convergence rate during learning process
in this case. It is noticed that the reward function is increasing
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over time and stabilizes after 60 days. Also, based on the
convergence rate, the error rate is decreased to as low as 10−5

which means 50 iterations are enough to reach acceptable
approximations. As a result, Q∗ is obtained which is used
to produce the best actions of the next days.
In Case 0, the learning process lasts for 75 days. The results
for applying the obtained Q-function to decide best actions on
day 103 are displayed in Fig. 4. In this figure, “Actions” bars

Fig. 3. The Reward and Convergence in Case 0 for D = 60 and Kmax = 50

Fig. 4. The Charging Power Curve in Case 0 for Day 103

Fig. 5. The Specifications of EV62 in Case 0 for Day 103

represent the collective amount of charging power for all EVs.
It is observed in Fig. 4 that the total charging power is equal
to the reference power throughout most of the day. It is also
noticed that at minutes 580 and 600 of day 103, some actions
are forced. To take a closer look at what happens during these
periods, Fig. 5 is presented. In this figure, the daily required
and available charging time, as well as SOC changes for EV62
are illustrated in the top and bottom figures, respectively. As
stated in (2), EVs that their required charging time is within
the δc minutes of their available charging time, are forced to
charge and EV62 is one of them on day 103. The top figure
is zoomed in during minutes 580-620 of the day, where the
purple filled bars represent the amount of required charging
time. At minute 590 of day 103, t(a,62) − t(r,62) = 20 ≤ δc
and thus, EV62 is put in the set of critical EVs and is forced
to charge at this time step. It is observed that this EV loses
45% of its SOC as a result of daily communications and at
200 minutes before its morning departure, its SOC is only at
60% which increases its risk of being placed in the critical
set.

B. Case 1 - Ramp Following

In this case, it is assumed that the EVs belong to an aggre-
gator who uses them to offer ramping services. In a demand
response service, EVs offer to lower their consumption during
ramping hours of the system. This time, the reference power
curve is according to Fig. 6, with a steep reduction during
the 4-hour period of 5 p.m to 9 p.m. For this case, D is
considered to be equal to 75, and reward function (7) is used.
It is seen that EVs learned effectively to alter their charging
patterns according to the reward signal, which is defined the
same as in Case 0. For day 87, the charging curve of EV51
is shown in Fig. 7. Through minutes 320 to 520 of day 87, a
lot of charging potential is wasted and many EVs are forced
to charge after minute 520 to reach full battery SOC before
their departure, EV51 being one of them. Although according
to Fig. 7, this EV is fully charged during working hours and
its required charging is reduced to half, it is placed among
critical units at minutes 520 through 550 due to be postponing
its charging.

C. Case 2 - Enhancing PV generation Dispatchability

Here, it is assumed that EVs belong to an aggregator who
also owns some PV units and their objective is to consume as
much during PV generation as possible to minimize the unused
PV capacity. For this case, D is considered to be equal to 60,
and reward function (8) is used. The results of this case suggest
that in this way, the EVs offer a good solution to reduce PV
curtailments, especially for days where PV output is higher
and the most curtailments happen. Fig. 8 shows the result of
a 3-day scheduling horizon for EV fleet in case 2.

It is seen from Fig. 8 that for a random 3 day running
horizon, PV is exploited to a very good extend. The solid
black line shows the forced actions, i.e. instances where forced
charging has happened. It is also observed in Fig. 8 that the
amount of forced actions in each day are related to the amount
of PV generation in the previous day. The more PV generation
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Fig. 6. The Charging Power Curve in Case 1 for Day 133

Fig. 7. The Specifications of EV51 in Case 1 for Day 87

Fig. 8. The Charging Power Curve in Case 2 for Days 86-88

happens during a day, the less forced actions occur at the next
day. EVs have learned to charge with solar output, so if more
PV generation is available, more energy is charged. As EVs
are not rewarded for charging outside of PV generation hours,
they show no inclination towards being charged during those
hours and take no charging action until “forced charging” takes
place. Because EVs have stored more energy during day 86
than day 87, the forced actions in the beginning of day 87 are

less than day 88.
Fig. 9 illustrates the charging patterns happening during the
first day in the three day horizon displayed in Fig. 8. It is
observed that all of the actions done before PV generation
takes place are forced. This means that EVs have learned
to delay their charging as much as possible so they can
be charged when PVs start to generate. Also, it is noted
that during the minutes 940 through 1000 on this day, the
maximum possible actions are lower than the PV outputs. It
means at this period, no further EVs can be charged to meet
the PV generation fully.

Fig. 9. The Charging Power Curve in Case 2 for Day 86

Fig. 10 shows the SOC trend of EV51 for the three day
horizon displayed in Fig. 8, i.e. days 86 through 88. It is
detected that at around hour 9 in the morning each day, this
EV is set to depart and must be charged to 100% SOC before
that time. For the first and third days in which PV outputs
are at higher levels, this EV is able to charge fully during its
stay at the workplace charging station. For the second day,
which PV outputs are the lowest, this EV learned to charge
during the PV generation too; however, this time it can not
reach 100% SOC due to the lack of renewable generation.

Fig. 10. SOC of EV51 in Case 2 for Days 86-88
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The performance comparison of the learned autonomous
behavior during different stages of learning with the optimal
solution from all-knowing optimizer is summarized in table
I. The all-knowing optimizer is supposed to know all of
the stochastic para metres beforehand and returns the global
optimum action at each decision step. The actions taken by
the all-knowing oracle are acquired by leveraging a linear
programming problem formulation. The results at the start of
training with no prior experience are brought as initial phase.
The results after 36 days of training and final stage of training
are also shown. It is observed that by moving ahead in time,
the performance improves substantially and with experiencing
more days during simulation, the performance of the learned
Q-function will be better.

TABLE I
PERFORMANCE COMPARISON OF THE LEARNED AUTONOMOUS BEHAVIOR

Case Study Case0 Case1 Case2
Performance Measure Reward Reward PV Utilization
Learning Days 75 75 60
Benchmark Optimizer -105 -30 100%
Initial Phase -5468 -5333 58.3%
After 36 Days -4201 -3646 78.1%
Final Performance -350 -136 90.1%

D. Fitted Q-Iteration vs. DRL

In this section, the results of deploying a DRL algorithm
for the EV scheduling problem are displayed. The algorithm
makes use of deep neural networks to reach an approximation
of the Q value an is similar to the one used in [30]. The results
for learning the problem in Case 0 are illustrated and compared
with the results of employing fitted Q-iteration for the same
case. It is shown the the DRL approach needs substantially
more data to reach satisfactory reward values.
The rewards curve during the learning process with DRL
algorithm is presented in Fig 11. The rewards for the first
75 days of simulation in Case 0 for fitted Q-iteration and
DRL algorithm are compared with each other in Table II.
The rewards of three stages of learning are presented in
the columns of this table. It is observed from Table II that
after 75 days of learning, the DRL method’s reward is still
very low, compared to that of fitted Q-iteration. According
to the learning curve of DRL algorithm for 365 days of
simulation which is plotted in Fig. 11, the rewards are not
still reaching competent values. These observations suggest
that the neural network’s overall learning rate is slower than
the fitted Q-iteration algorithm for this problem, i.e. it needs
a larger amount of training data to reach acceptable levels of
Q approximation.

V. CONCLUSION

In this paper, an EV fleet was utilized to offer system
flexibility as a means of offering a solution for reducing
renewable curtailments. Three case studies were simulated
which their results suggested that with appropriate training
strategy, a set of EV vehicles can be implemented success-
fully for flexibility provision and curtailment reduction. The

TABLE II
LEARNING COMPARISON OF FITTED Q-ITERATION VS. DRL

Algorithm Fitted Q-Iteration DRL
Performance Measure Reward Reward
Benchmark Optimizer -105 -105
Initial Phase -5468 -6568
After 36 Days -4201 -6243
After 75 Days -350 -5732

Fig. 11. The Average Rewards of DRL algorithm in Case 0 for 1 Year
Simulation

reinforcement algorithm used to solve the problem is fitted
Q-iteration with the decision trees as the regression function.
With this approach, instead of solving an optimization problem
for each period, we simply look up the best action value from
the Q-function.
In case 0, EVs learn to follow a reference power trajectory
which is according to the amount of energy bought for the
aggregator who owns parking stations. In case 1, it is shown
that the EV fleet can also be offered as a resource for ramp-
ing products, in this case ramping down their consumption.
Finally, for a system with integrated PV generations, in case
2 it is observed that EVs can learn how to delay their charging
in order to utilize the most PV generation possible, and
eventually help reduce the curtailments. It is also shown that
DRL algorithm can not reach a competent learning behavior
with small amount of data in the EV scheduling problem of
this article. Currently, up to 18% of PV generations in some
days at CAISO are curtailed, and by coordination of EVs
charging, our study showed great promise in this approach
which has never been studied before.
For future work, some possibilities to further explore this
problem include deploying a multi agent framework for this
problem, and searching for methods to cope with more com-
plex uncertainty scenarios.
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