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Abstract—Vertical farming is an emerging sustainable solution
to enhance the resilience of the food supply and mitigate the
carbon emissions of the agriculture sector amidst population
growth, geopolitical risks, and climate change concerns. The
proximity of food production to consumers enhances food supply
resilience. Besides, the potential to leverage renewable resources
to energize Vertical Farms (VFs) paves the way to mitigating their
food carbon emissions. At the same time, VFs will introduce
new challenges and opportunities within Active Distribution
Networks (ADNs). While the electricity demand will increase
within the ADN, the flexibility in VF’s electricity demand provides
system operators with demand-side management opportunities.
This paper proposes a model to explore the demand of various
systems within a VF and their coordination with other assets
within the ADN, such as Electric Vehicles (EVs) and photovoltaic
(PV) systems. To this end, a framework to procure the optimal
operation schedule of VFs under demand and solar genera-
tion uncertainties with convexified AC power flow constraints
is presented. It is shown that the proposed framework also
enhances the dispatchability of renewable Distributed Energy
Resources (DERs). The formulated two-stage robust optimization
problem is reformulated as a Mixed-Integer Second-Order Cone
Programming (MISOCP) problem to be solved by reliable off-
the-shelf solvers. It is shown that the demand response of VFs can
mitigate the carbon emissions of the electricity and agriculture
sectors by up to 70% and decrease the operation cost of the
electricity network by 10% for the IEEE-33 bus system compared
to utilizing an inflexible schedule for VFs.

Index Terms—demand response, distribution network, vertical
farms, uncertainty, sustainable communities.

NOMENCLATURE
Sets
DID; Set of all loads / loads connected to bus ¢
EIE; Set of all EV fleets / fleets connected to bus %
FIF; Set of all vertical farms / VF's connected to bus ¢
G/G;  Set of all feeders connected to the network / bus ¢
S/S;  Set of all PVs / PVs connected to bus ¢
Ly Set of all levels of vertical farm f
T Set of time horizon
Z Set of electricity generation resources
0 Set of adjacent buses to bus ¢
Variables
C, s Lifting operator terms of SOCP relaxation
e;, f; Real/imaginary part of voltage phasor of bus ¢

E! Energy of the fleet of EV e at time ¢ (MWh)

I f) 5 Status of systems within VF f at time ¢

P! Real power dispatch of solar s at time ¢ (MW)
Real charging power of EV fleet e at time ¢
MW)
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P]? liJir Real power demand of the lighting/irrigation system
of VF f at time ¢

Pﬁ’ft’ﬂ ~ Real power demand of air conditioniner of level [
of VF f at t working in heating/ cooling mode

Pfigt Exchange heating power of level [ of farm f at ¢

Plﬁft Real power demand of the dehumidification system
of level | of VF f at time ¢

'}’” Jir Reactive power demand of the lighting/ irrigation

system of VF f at time ¢

Q%th’t Reactive power demand of the air conditioner/ de-
humidifier of level [ of VF f at time ¢

P, Q% Reallreactive power demand of VF f at time ¢
(MW/MVAR)

Pg, Q; Real/reactive power dispatch of generation unit g at
time ¢ (MW/MVAR)

P};,Q%; Real/reactive power flow between bus i and j at
time ¢t (MW/MVAR)

6}7 f Temperature of level [ within VF f at time ¢ (K)

St Absolute humidity of level [ of farm f at time ¢
()

LA Dual variables

Parameters

Af The cultivable area of level | within VF f (m?)
i’y The surface of walls of level [ within VF f (m?)

B/G  Susceptance / conductance matrix (S)

BoU Budget of uncertainty (%)

C, The specific heat capacity of air (A]fg(h)

C’ZJt Carbon emissions of electricity generation z at ¢
(+5)

g The gravitational force (37)

zlf The required LED light intensity for level [ of vertical
farm f (lux)

K" TJ}Jﬁ}eral conductivity of level [ walls within VF f
i)

pe Maximum charging power of fleet of EVs e (MW)
Ph Forecasted real power of load d at time ¢ (MW)

P Real power demand of load d at time ¢ (MW)
Forecasted available solar power for PV s at time ¢
(MW)

Dt Available solar power for PV s at time t (MW)

qu Reactive power of load d at time ¢ (MVAR)

P Traveling power consumption of EV e at time ¢t (MW)

pf, P Fertilization demand of level [ of farm f at time ¢
(MW)

Dw Electricity demand of the dehumidifier to remove 1

liter water form the air (MW)
Ty Total seconds in an hour (sec)
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Tlf The required lighting hours for level [ of VF f (h)
! The required hours to irrigate VF f (h)

mi, Total water demand of VF f in a day (kg)

Wﬁ Jf Evaporated water from crops of level [ within VF f
at time ¢ (lit)

X"y The thickness of walls of level [ within VF f (m)

o Inverter efficiency of EV fleet e

AJ  The height VF f (m)

€ The efficacy of the LED lamps ($4£)

771{ The efficiency of water pump p in VF f (%)
nf The efficiency of air conditioning systems of VF f

0!,  Outside temperature of VF at time ¢ (K)
ol Share of generation type z at time ¢
Qy Time-of-Use cost of electricity at time ¢ (%)

I. INTRODUCTION

He growth in the world’s population will lead to funda-

mental changes in energy and food security. The world
population is predicted to reach 9 billion by 2050 [1], and
80% of the population will reside in urban areas [2]. Thus,
the demand for fresh food in cities will grow. Climate change
concerns over deforestation and geopolitical conflicts will lead
to more limited access to agricultural [3]. Thus, an emerging
challenge is to present a sustainable, efficient, and and cost-
effective food supply chain. The growing trend of vertical
farming” as a potentially sustainable food supply solution
[4] aims to address several challenges, including but not
limited to shedding the restrictions on agricultural products
due to seasonal weather patterns, natural disasters, temperature
changes [5], water supply, and irradiance intensity, overcoming
transportation challenges [6], and the need to significantly en-
hance yields [7]. The VF concept envisions the sprawling crop
farms of old condensed into much smaller factory-like sites
where conditions can be optimized and yields are remarkably
increased [8], [9]. Vertical farming is a concept that involves
cultivating plants on vertically inclined surfaces, where it
is resilient against weather-related distress and geopolitical
disruptions impacting the food supply chain network. Some
argue that the ultimate goal of vertical farming is to provide
fresh food for the entire population of the world without
concern for climate change and disasters[10].

Transportation, agriculture, and the electricity sectors are
among the largest global emitters of greenhouse gases, and
they can account for 70% of the global greenhouse gas
emissions by 2050 [11]. The Paris Agreement in 2015 set
out a desire to limit the global temperature rise to 1.5°C
above pre-industrial levels. Yet, based on the current trends in
emissions and national policy commitments, the Paris targets
are in jeopardy [12]. Utilizing vertical farms can mitigate the
carbon emissions of the agriculture and transmission sectors
by eliminating the need for harmful pesticides, which account
for 33% of the total indirect carbon emissions of farm products
[13], decreasing the food miles traveled [14], eliminating the
usage of combustion engine machinery, (e.g., tractors), and
increasing the yield of crops [1]. In [15], the authors present a
roadmap to decrease the carbon emissions of the agricultural
sector. This paper aims to illustrate how the increase in the

penetration level of VF's will contribute to a reduction in the
carbon emissions of smart communities.

With the projected increase in the utilization of VFs in
urban areas, investigating the challenges and opportunities of
utilizing these new loads for the electricity grid plays a vital
role in the operation and planning problems of the electricity
network. Thus, presenting a demand-side model to present
the performance of different systems in a VF is the key to
studying those challenges and opportunities. The systems that
should be considered within a VF are 1) lighting; 2) irrigation
and fertilization; 3) air conditioning; and 4) dehumidification
system [4], as presented in Fig. 1. Coordinating the energy
consumption of these loads with the operation of the electricity
ADN can enhance the operational planning characteristics
of the network in terms of renewable dispatchability and
demand response. Currently, there is a gap in the literature to
investigate the demand response potentials of various systems
within a VF as a flexible asset to the smart grid. This paper
presents a model exploring different aspects and ambient
features of a VF to become a flexible asset to the smart grid.
The proposed model for VFs is utilized for coordinating the
flexible demand of VFs with other assets within the ADN
to enhance the resilience of food and energy supply. This
paper shows that utilizing VFs as the main resource to meet
the food demand will consume about 30% of the share of
the electricity demand. The future smart grid is expected to
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Fig. 1: Control unit and electricity demand of different systems
within a vertical farm

include independent entities, such as prosumers, who will plug
in their generation or consumption devices at their discretion.
The penetration level of uncertain DERs in the power system
is increasing. Particularly, increasing the penetration level of
EVs within the ADN will deteriorate the power quality [16]. A
practical tool to address these challenges is demand response.
Demand response refers to encouraging end-users through a
specific tariff or program to change their normal electricity
consumption patterns, i.e., consume less power during peak
times or shift their electricity demand to off-peak hours to
flatten the demand curve [17]. Demand response transforms
consumers into players with a more active role in energy
management by leveraging the potential flexibility in elec-
tricity loads [18]. Several flexible demand entities, including
data centers[19], EV charging stations[20], [21], residential
EVs [22], cooling and heating loads [23], and residential
loads [24] are presented as demand-responsive loads in the
literature to remedy the challenges raised by DER uncertainty
within the ADN. Besides, several authors have modeled the air
conditioning systems within residential loads with the focus
of utilizing the model of air conditioning systems for demand
response [25]. However, this paper models the irrigation and
lighting systems within a VF as demand-responsive assets.
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The numerous operational advantages of demand response
are enumerated in the literature and are also applicable to
VFs. First, VF demand response could mitigate the differ-
ence between peaks and valleys of power demand. Second,
adjusting the internal schedules of the VF could enhance the
dispatchability of renewable DERs, similar to those achieved
by utilizing EVs [26]. This paper presents the model of VFs
as a demand-responsive asset in coordination with uncertain
DERs such as EVs and PV systems within an ADN. Several
control systems, including lighting and irrigation systems, can
operate as shiftable loads within a VF. To ensure proper crop
yield and growth, the air conditioning and dehumidification
systems are constantly controlled to maintain temperature and
humidity within the desired range. Scheduling VF based on
the unit cost of electricity aims to minimize their operation
costs. Besides, their carbon emissions may be mitigated by
operating during hours of abundant renewable energy.

This paper aims to address the following questions: What
would be the benefit of coordination between the electricity de-
mand of systems within VFs and other assets within the ADN?
Can the flexibility of the demand within a VF provide utilities
with demand-side management opportunities to enhance re-
newable dispatchability? Is the electricity distribution network
ready for the emerging electricity demand of VFs?The main
contributions of this paper are listed as follows.

o The model of various systems within a vertical farm is
presented and formulated as a demand-responsive asset.
It is shown that coordinating VFs with DERs and other
demands within the ADN enhances the dispatchability
of renewable DERs, decreases the unfortunate renewable
generation curtailments, and thus decreases the overall
carbon emissions and operating cost of the ADN.

o A framework is presented to examine the preparedness of
ADN for various scenarios of VF's penetration level con-
sidering demand and solar generation uncertainties, where
the objective function is carbon emissions minimization
or operation cost minimization. Here, demands within the
VF's across the ADN are scheduled over a selected set of
worst-case uncertainty realizations. Furthermore, it is il-
lustrated that coordinated scheduling of VF's mitigates the
adverse impact of uncertainties in renewable generation
and demand on the operation of ADN.

o The impact of utilizing VF's, as a sustainable food supply
solution on the carbon emissions of the electricity and
agriculture sectors is evaluated. Besides, the performance
of the proposed framework on other emerging challenges
within the ADN including the increase in electricity
demand of EVs due to the push toward transportation
electrification, is presented.

II. PROBLEM FORMULATION

In this paper, first, models of different systems in VF's are
suggested. Then, the optimal operation schedule of shiftable
systems within VFs is proposed and coordinated with other
assets within the ADN. The optimal operation scheduling
problem for the VFs considering the uncertainties of demand
and solar generation units, is a two-stage robust optimization
problem. Here, the schedule of the irrigation and lighting

systems within a VF are here-and-now decision variables that
are procured in the first-stage problem. Each type of crop
requires a specific daily intake of light and water to ensure
optimal growth, which must be satisfied. The power dispatch
of the feeder bus, the utilized solar generation, the demand of
air conditioning and dehumidification systems, and the served
demand are the wait-and-see decision variables, which are
determined based on the uncertainty realization in the second-
stage problem. Here-and-now decision variables are the first-
stage decisions that will be made at the time of deciding
the daily schedule of the shiftable systems within VF's. Once
the decisions are made, they cannot be adjusted during the
operation period of the problem. The wait-and-see decision
variables are the second-stage decisions, which could change
given the realization of uncertain variables. Therefore, the
main criterion to distinguish them is the necessity of making
the decision at the time of determining the daily schedule for
the VF. Two different objectives are considered for the optimal
scheduling problem, which is a two-stage robust optimization
problem: carbon emissions minimization and operation cost
minimization.

A. Objective Function

The presented discussion aims to address the operation
preferences of cost minimization and carbon emission min-
imization.

1) Carbon emissions minimization problem: The objective
function of the optimal operation scheduling problem for VF's
with respect to carbon emissions is proposed in (1). The first-
stage problem minimizes the operation carbon emissions of
the shiftable systems within VF's by procuring the optimal
operation schedule of VFs. As concerned in the second-stage
problem, the carbon emissions of the ADN and VF's depends
on the generation mix, which consists of various resources, ptz,
(e.g., natural gas, renewable resources, imports of connected
transmission networks, etc.), the total power dispatch of the
feeder at time ¢, and the corresponding carbon emissions of
each source to generate 1 p.u. of electricity, C'%", at time ¢. The
carbon emissions of the generation mix is changing over the
operation horizon. For instance, the carbon emissions of the
generation mix is low during sunny hours due to the increase
in the share of solar generation units, and it is high due the
to low participation of renewable generation during the night.
The first term in the carbon minimization function (1) presents
the shiftable carbon emissions of the irrigation and lighting
systems of VFs over a time horizon T, respectively. The real
power demand of the irrigation and lighting systems, i.e.,
shiftable systems within VF, depends on the first-stage binary
decision variables, the status of lighting and irrigation systems
(I lhft, I}T '), at time ¢. The electricity demand of the irrigation
and fertilization systems of farm f at time ¢ depends on the
status of the irrigation system, the total water demand of VF
f in a day, m{;, the height of the farm, Ai, the gravitational
force, g, the efficiency of the water pumps, and the total number
of irrigation periods, T,;J:,, as well as the fertilization demand
at each irrigation period. The electricity power demand of the
lighting system of VF f at time ¢ depends on the required
LED light intensity for the growth of crops at each level,
zlf , the cultivated area, Alf , the efficacy of LEDs, ¢;, and the
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status of the lighting system at level [ of farm f at time ¢,
I ll‘ft The last term presents the second-stage carbon emissions
minimization of the ADN over the worst-case realization of
uncertain variables (i.e., demand and solar availability).
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2) Operation cost minimization problem: The objective
function of the optimal operation scheduling for VFs with
the minimum operation cost is proposed in (2). The first two
terms in (2) present the first-stage problem that minimizes the
operation cost of the shiftable systems within VFs over 7.
The operation cost of the VFs depends on the Time-of-Use
(ToU) price of the electricity, «;, and the real power demands
of lighting and irrigation systems over 7. In the first-stage
problem, the optimal schedule of the irrigation and lighting
systems (I “ft 1}7 ") are procured to minimize the operation
cost of VFs. The last term of the objective function presents
the second-stage problem that minimizes the operation cost
of ADN over T over the worst-case realization of uncertain
variables (i.e., demand and solar generation)

l'_ntqith [Z ( h + Z pr,t
Iy I et fef zr hnp leL,
A if
1 rlit t
+ Z I )] —s—;na;(manZatP 2)
leLy P Py teT geg

3) Joint cost and carbon emissions minimization problem:
The joint cost and carbon emissions objective function of the
optimal operation scheduling for VFs is proposed in (3), where
the first two terms are for the first-stage problem and the
last term represents the second-stage problem. Here, ~ is the
monetizing coefficient for carbon emissions.
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B. Vertical Farms Model

The model of systems within VFs is suggested in (4)-
(8), which consists of lighting, irrigation and fertilization, air
conditioning, and dehumidification systems. Note that in the
proposed model, the electricity demand of the lighting and
irrigation systems is 95% of the total VF's electricity demand
[27]. The main advantage of VFs compared to conventional
farming is their resilience against weather-related stress, as
they maintain the crop’s temperature within a threshold range
of 27°C to 31°C. In [28], the authors show that stress thermal
time of more than 4000 °C-minutes decreases crop yield by
more than 60%.

The total real and reactive electricity demand of VF f at
time ¢ is the sum of the real and reactive electricity demand
of all the systems in the VF as proposed in (4a) and (4b),
respectively. Note that the variable after each colon in front
of constraints shows the dual variable corresponding to that
constraint. The details of the model associated with each
system within the VF are given as follows:

Pj=Pii+Phi+ > Pl + BT+ P @)
lecy

Q= Qi+ D Q7
leLy
1) Lighting system: The model of the lighting system of
VF f is suggested in (5). The electricity power demand of the
lighting system of VF f at time ¢ depends on the required
LED light intensity for the growth of crops at each level, the
cultivated area, the efficacy of LEDs, and the status of the
lighting system at each level, as presented in (5a). The crops
of each level of VF f need a specific duration of light per day
to grow as presented in (5b).
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2) Air conditioning system: The air conditioning system of
level [ of VF f is modeled in (6). The heating or cooling power
of the air conditioning system to control the air temperature
of level [ of farm f is modeled in (6a). Here, Pl‘,l]"f is the
heating or cooling power required at level [ of farm f at time
t. Note that P’} pial Py "~ are non-negative variables to model
the absolute power demand of the air conditioning system
working in heating and cooling modes. The exchange heating
power, Pl)ff’t, depends on the temperature difference of each
level and outside, the walls’ or glasses’ thickness, area, and
thermal conductivity, as presented in (6b). The maximum and
minimum temperatures of each level of the VF depend on the
type of cultivated crop. Based on the desired maximum and
minimum temperature for each level, the temperature of each
level of farm f at time ¢ is limited in constraint (6¢). The
electricity demand of the air conditioning system is a non-
negative variable. Thus, it is the sum of the real power demand
of the cooling and heating modes of the air conditioning
system as presented in (6d). The reactive power demand of
the air conditioning system at level [ of farm f depends on
the power factor of the related air conditioning system, PFy',
and the real power demand of the air conditioning system as
presented in (6e).

Pi?t Iy mﬁfca(‘il:ff 6is) APt (6a)

Pt = K AP (0, — 01 1)/ X1 A" (6b)

91f<9lf<elf o (60)

Plf _Pat+ ]Dla}t,— :/\iv},t (6d)

Qa,t_ 17PFlaf2(Paf++Pat ) . \Qart (6¢)
Lf — pFla CALF



IEEE TRANSACTIONS ON SMART GRID

3) Irrigation system: The model of the irrigation system of
farm f at time ¢ is suggested in (7). The required hours for
irrigation of crops of VF f is limited in (7a). The electricity
demand of the irrigation and fertilization systems of farm f
at time ¢ depends on the quantity of water required in each
irrigation period, the height of the farm, and the efficiency of
the water pumps, as shown in (7b). The reactive power demand
of the irrigation system of each farm de Jpends on the power
factor of pumps utilized on the farm, PF} _, and the real power
demand of the irrigation system as shown in (7c).

Z Iw‘ t_ ZJ; (7a)
teT
t ’”‘ t . 1r Pm"
0< P, =(" 11 +§j ey App (7b)
hnp l€£f
2
\/1— PF7
QL =+— " pt. S \Qir (7c)
1 PFZ/; fs fit

4) Dehumidification system: Since VFs are indoor facil-
ities full of crops, the absolute humidity of the air in-
creases due to the evaporated water from the crops. Thus,
the de/humidification system only works in dehumidification
mode. The model of the dehumidification system at level [
of farm f is modeled in (8). The electricity demand of the
dehumidification system at level [ of farm f at time ¢, Pz ]’c,
depends on the evaporated water from crops, and the requlred
electricity demand of the dehumidification system to remove
1 liter of water from the air as presented in (8a). The absolute
humidity of each level of farm f at time ¢, glt’ £ is limited in
(8b).

Py = Wigpw = (g —sif e NG @

— It It
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C. EV Charging and DER Model

The solar generation power at time ¢ is limited by the
available solar power at time ¢ as presented in (9) and is
adopted from [29].

0< P <P A C)

The real power charging of fleet of EV's e at time ¢, P¢, i
capped by the multiplication of the maximum charging power
of fleet of EVs e and the ratio of connected EVs in the fleet
(10a). The energy balance of fleet of EV e at time ¢ depends on
the real power charging, efficiency of the inverter, and traveling
power consumption of the fleet at each time as presented in
(10b). The energy of fleet of EVs e at time ¢ is limited as
shown in (10c) and is adopted from [29].

0< P <peR! Dpe e, (10a)
E! = EI7V — (07, RY — EPSy) AL (10b)
E ,<E'<E, LTI (10¢)

D. Distribution Network Model

The real and reactive nodal balance equations in their AC
form are presented in (11a) and (11b), respectively. The real
and reactive power flow constraints of line (7, j) of the ADN in
their AC form are presented in (11c) and (11d), respectively,
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— (Bii+ Y Bij)le)® + (f))]  (11b)
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2

PY = —Gij(ef + %) + Gyetel + fL1H)—

Bij(eif; —e5ff) (e
e;+ fif;)-
Gijleifi — e ff) (11d)

The AC nodal balance and power flow equations have bi-
linear terms that make the robust optimization problem a non-
convex optimization problem. A set of SOCP lifting variables
is introduced in (12) to relax these bi-linear terms.

chi= (D)2 + (fD)% o i=elel + fifl; sti=elfl — flet
(12)

The SOCP relaxed form of the nodal balance and power flow
equations is presented in (13) by leveraging the SOCP lifting
variables introduced in (12). As the SOCP relaxation method
is tight for acyclic radial distribution networks [31], [30], the
rendered solution of the optimal operation scheduling problem

for the ADNs is exact.
dovbt Y Pty F

S P+ Pl=

2
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t 2
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R
G”C” + G’Lj ij + Bz] ij : )\Z (130)
Qij = Bijc BZ]C + G”Sij : )\gj’t (13d)

The relationship between the SOCP lifting variables, and the
second-order cone relaxation of the relating the SOCP lifting
terms are presented in (14a) and (14b), respectively. Besides,
the SOCP relaxed form of the voltage limits of each bus is
presented in (14c).

t t
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The uncertainty of the available power of solar generation
unit s at time ¢ and the uncertainty of demand d at time ¢ are
limited by (15a)-(15b), respectively.

0 _ A;’t —=t,0 —&-As’t]
_Adf’pD +Adt]

(15a)
(15b)
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III. SOLUTION METHOD

The SOCP relaxed form of the optimal operation schedul-
ing problems presented in Section II is a two-stage robust
optimization problem. Here, the Column-and-Constraint Gen-
eration Algorithm (C&CGA) [32] is leveraged to tackle the
uncertainty of demand and available solar generation. The
relaxed form of the optimal operation scheduling of VFs
problems is presented in the compact form of the two-stage
robust optimization problem, where x is the first-stage binary
decision variable, y is the second-stage continuous decision
variable, and w is the uncertain variable realized in the second-
stage problem. In Section III-B, ¢, e, b, A, E,d, F, G, h, H are
corresponding known coefficient vectors or matrices. The
binary decision variables of the first-stage problem, x, are
vectorized representations of the status of the lighting and
irrigation systems of each floor at each time slot, as presented
in (5b) and (7a), respectively. The objective function (1),
(2), or (3) is presented as (16a) and the sets of constraints
given in (16b) and (16¢) present all constraints with binary
decision variables (i.e., first stage binary variables, x) that were
formulated in (5a)-(5b) and (7a)-(7b). The set of constraints
presented in (16¢) captures the second-stage decision variables
y vectorized for all indices as well as the realization of
uncertain variables u such as demand of power system and
solar generation availability and vectorized for all indices. The
set of constraints given as (16d) presents the feasibility set of
second-stage decision variables.

min ¢’z + ma()]((mln bTy) (16a)
st. Ax+PEBy=d,x; € {0,1} (16b)
Fx+ Gy >h— Hu,z; € {0,1} (16¢)
y € Qz,u) (16d)

Enumerating all scenarios with the different realizations of
u is practically challenging. Therefore, to solve the problem
presented in (16), an iterative solution method that selects a
subset of uncertain variables at each iteration is presented.
The size of the subset at each iteration is determined by
the BoU. The dual form of the SOCP relaxed representation
of the second-stage problem is utilized to determine the
worst-case realization in an iteration given the rendered first-
stage decisions from the current iteration of the algorithm.
The details of the algorithm are discussed in Section IIL.B.
The presented C&CGA determines significant scenarios that
contribute to the worst realization of the system operation cost
or carbon emissions. After the decomposition, the problem
consists of a first-stage problem and the second-stage problem,
which are shown in (17) and (18), respectively. It should be
noted that 1) represents the iteration index.

min ¢l x4+ (17
x

st. vy > by

6
Az + By =d
Fz+Gy™) > h — Hu*®)
Ve € Qp,y € Qy
max( min  bTy) (18)

uelU yeQ(x,u)
st. Az + By =d
Fz*+Gy>h— Hu

Here-and-now decision variables of the first-stage problem are

passed through the second-stage problem. The SOCP relaxed
inner minimization problem of the second-stage problem is
reformulated as a maximization problem using its dual form.
Therefore, the maximization problem presented in (19)-(27j),
will render the worst realization of uncertain variables given
the minimization of the inner problem. In an iterative process,
the realized uncertainties are added as a column to the first-
stage problem to update the here-and-now decision variables.
Once the C&CGA algorithm is converged, no new column will
be added, and the final robust here-and-now decision variables
are revealed.

A. Dual Reformulation of SOCP Relaxed Second-Stage Prob-
lem

To reformulate the max-min problem in the second-stage
problem as a maximization problem, the dual representation
of the inner minimization problem is proposed in (19)-(27)
assuming that the worst realization of uncertainties occurs at
the extreme point within the polyhedral uncertainty set. Note
that the variable after each colon in front of dual constraints
shows the related primal variables. The objective of the dual
problem is presented in (19). Note that the status of the
lighting system and irrigation system (i.e., I;:lfz’t and Il*}”)
are fixed based on the obtained values by solving the first-
stage problem.
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seS

The dual constraints associated with the real power generated
by solar generation unit s at time ¢ is given in (20).

= YA =0 2%
€L

(20)
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The dual constraints associated with the real charging power
and energy of the fleet of EV e at time t are presented in (21a)
and (21b), respectively.

B, =T AL =N =0

po— T+ A=A =0

: Pec,t (21a)
: Eé (21b)
The dual constraints related to the total real and reactive

power demand of the VF f at time ¢ are presented in (22a)
and (22b), respectively.

M=) <0 : P} (22a)
iGIf

A=A =0 1 QY (22b)
1€F;

The dual constraints associated with the lighting, air con-
ditioning, irrigation, and humidification systems are presented
in (23)-(26b). The dual constraint corresponding to the real
power demand of the lighting system of VF f at time ¢t is
presented in (23).

Pl AR =M =0 t Py (23)

The dual constraints related to the total real and reactive
demand of the air conditioning system at level [ of farm f at
time ¢ are presented at (24a) and (24b), respectively. Besides,
the dual constraints corresponding to non-negative demand of
the air conditioning system working in cooling and heating
modes at level [ of farm f at time ¢ are presented at (24c)
and (24d), respectively. The dual constraints associated with
exchange heating power and temperature of [ of farm f at
time ¢ are presented in (24e) and (24f), respectively.
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The dual constraints related to the total real and reactive
demand of the irrigation system at level [ of farm f at time ¢
are presented at (25a), (25b), respectively.

2
\/1- PF}
Py Pt it o y\Qir . pt
Nt = G ST AR =0 Py 25
A =25t =0 : QY (25b)

The dual constraints related to the absolute humidity and
demand of the dehumidification system at level [ of farm f at
time t are presented at (26a), (26b), respectively.

fit _ _fit
P = A s T =0

A= A5T <0

The dual constraints associated with the real and reactive
power dispatch of the feeder bus for the carbon emissions
minimization problem are presented in (27a) and (27b), re-
spectively. It should be noted that the right-hand side of the
dual constraint associated with the real power dispatch of the
feeder bus (27a) would be « if the objective is to minimize the
operation cost of the distribution network. The dual constraints
associated with the lifting terms ¢f;, ¢f;, and sf; are given in
(27¢)-(27e), respectively. The dual constraints associated with
real and reactive power flow of lines are presented in (27f) and
(27g), respectively. The dual SOC cone is presented in (27h).
To determine the worst realization of the uncertain variables,
binary variables U!, V!, UL, V! are introduced. Each pair of
binary variables is mutually exclusive, as shown in (27i).
Moreover, the budget of uncertainty limits the combination
of the binary variables that yields the worst realization of the
uncertain variables, as shown in (27j). Note that |7|(|S|+|D|)
represents the total number of uncertain variables.
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B. Column-and-Constraint Generation Algorithm

By utilizing the dual reformulation of the inner mini-
mization problem of the second-stage problem (18) which is
presented in (19)-(27j), the second-stage optimization problem
is reformulated and presented in its compact form in (28).
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max d"\ = (h— Hu)" (28)
U\ b
st. ATA+ETu=0

p>0

The binary-to-continuous variable multiplications in (19) are
linearized using the method presented in [32]. The C&CGA
that was utilized to solve the optimal scheduling problems of
VFs is presented in Algorithm 1.

Algorithm 1 Column-and-Constraint Generation

: Set LB = —o00,UB = o0, initialize ud
=0
: while

Using u(*) solve the first-stage prob. (17) — z*,v*

1

2

3 UB-LB

4:

5: Set LB = cTz* +~*
6

7

8

9

5~ > € do

Using =* solve the second-stage prob. (28) — u*, y*
Set UB = c¢Ta* + bTy*
Update ¢+ =1
: Assign u(¥) = u*
0: end while

—

In the first step, the lower bound (LB) and upper bound (UB)
are set to —oo and oo, respectively. Besides, the initial value
of uncertain binary variables is set to zero. If the convergence
condition is not satisfied, solving the master problem (17) pro-
cures the optimal scheduling solution for VF's (Il*l; t,I}‘”t).
The LB is updated based on the solution of the first-stage
problem. In the next step, the second-stage problem (28) is
solved to procure the subset of the Worst -case scenario (i.e.,
U;(w+1)7t7vs*(w+1),t’ U;(w“)’t,v (Y+1), ) Then, the upper
bound of the algorithm is updated using the binary and
continuous decision variables procured by solving the second-
stage problem. At last, the iteration index, %, and u® will
be updated. The algorithm will converge once the difference
between the upper and lower bounds of the algorithm divided
by the upper bound is equal to or less than a small non-
negative parameter (¢) as presented in line 3 of Algorithm
1. Once converged, the first-stage decisions procured in the
last iteration are reported as here-and-now decisions. Problems
(17) and (28) are MISOCP optimization problems, and they
are solved using off-the-shelf conic programming solvers such
as Gurobi [33]. Here, a PC is utilized with a Core 17 CPU 4.70
GHz processor, and 48 GB memory.

IV. CASE STUDIES

In this section, the performance of VFs as a demand-
responsive load is evaluated for different scenarios. Besides,
the challenges and opportunities of utilizing VF's in the ADN
are illustrated in the cases. The capability of VFs to increase
the dispatchability of DERs in an ADN with a high penetration
level of solar generation units is also demonstrated. Lastly,
the coordination of VF's with renewable DERs is investigated
to mitigate the impact of renewable uncertainties on ADN
operations.

A. Test System Configuration

The topology of the modified IEEE 33-bus system is
presented in Fig. 2. The test system consists of 33 buses,

32 branches, 7 solar generation units, 32 loads, 4 vertical
farms, and 12 EV charging points. The base net demand, solar
generation, the share of each electricity generation resource in
the generation mix of each hour, and carbon emission trends
are set according to the normalized hourly data of California
ISO on November 4, 2021 [34]. Given the electricity demand
of the ADN without VF's (120 MWh per day), there are 4200
houses in this community, and the average household number
is considered 3 [35]. Assuming that each person consumes 2.5
kg of food per day, the food consumption of the community
is 31.5 tons per day. Besides, the electricity usage of a 40-
level VF building with 900 m? VF that produces 32 tons of
food each day [4] is 48 MWh per day. Thus, the share of the
electricity demand of VFs with 100% penetration level in the
total electricity demand of the network is roughly 30%. In [36],
it is mentioned that the average C'O2 emissions of cultivating
1kg crops is 1.5 metric kg (mkg) C'Os. Thus, the total carbon
emissions of cultivating 31.5 tons of crops per day would be
47 metric tons (mT) per day. In [37], it is mentioned that food
in the United States travels about 1500 miles to get from the
farm to the consumer. Assuming the transport of 5500k¢g crops
with each truck, 5 miles per gallon for refrigerated trucks, and
0.0127 mT COsz-e emission for each gallon of diesel [38],
the COs-e of delivering the conventional agriculture produces
to this community is 21 mT COs-e. Thus, the total carbon
emissions of producing food in the presented community using
conventional farming methods is 68 mT COs-e. Thus, the
carbon emissions of 1kg food for the conventional farming
method is 2.16 metric kg.
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Fig. 2: Modified IEEE 33-bus test system

B. The Impact of Vertical Farming on the ADN

Here, two different objective functions are compared. In
sections IV-B1 and IV-B2, the objective is to minimize the total
carbon emissions of the distribution network over 24 hours,
while the objective function in sections IV-B3 and IV-B4 is to
minimize the total operation cost of the distribution network.
To illustrate the performance of the proposed VF model, three
cases are considered as follows.

Case 1- No VF is considered and the conventional agricul-
ture fulfills the food demand

Case 2- VFs with inflexible demand schedule of its systems
are considered within the ADN as shown in Fig. 2.

Case 3- VF's with shiftable demand of lighting and irrigation
systems within the ADN.

It should be noted that an inflexible schedule VF refers to
the best-practice predetermined schedule that is not flexible to
changes in coordination with renewable generation.
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1) Analyzing the impact of VF on carbon emissions of food
consumption and the distribution network: Utilizing vertical
farms decreases the total carbon emissions of the agriculture
and transportation sectors. Here, the impact of the VFs on the
carbon emissions of the ADN and the carbon emissions of
the transportation sector are investigated. Although electricity
demand increases with the presence of VF's within the ADN,
the overall carbon emitted by the electricity, transportation, and
food sectors decreases. Shiftable demand within VF facilitates
a further decrease in carbon emissions as it shifts VF’s demand
into hours with a cleaner electricity generation mix. Note that
the penetration level of VFs demonstrates their share of VFs
in producing the total food demand in the community.

Total carbon emissions of the smart community due to
agricultural activities and electricity demand of the ADN with
various penetration levels of VFs are presented in Fig. 3.
When there is no VFs in the community, case 1 (i.e., the
penetration level of VF's is zero), the agricultural products are
obtained from conventional agriculture methods. Fig. 3 shows
that the decrease in the carbon emissions of the agriculture
sector dominates the increase in the carbon emissions of the
ADN with the additional VF demand. Electricity Sector Case3
and Agriculture Sector Case3 present the carbon emissions
of electricity sector and the carbon emissions of agriculture
sector when utilized VFs have shiftable demand, respectively.
Exclusive community food supply by VFs cuts the total
carbon emissions of the electricity and agriculture sectors by
62%. Fig. 3 shows that the total carbon emissions of the
community in case 1 is 82.73 mT COs-e. It decreases 12.6%
to 72.29 mT C'Oz-e with a 20% supply of the community food
demand by VFs. The maximum decrease of 66% to 28.18 mT
COs-¢ is achieved in case 3 (i.e., shiftable VFs with 100%
penetration level). The flexibility in the electricity demand of
VF's contributed to 9% the reduction in carbon emissions when
the penetration level of VFs is 100%. Besides, the carbon
emissions of producing 1kg food decreased 80% from 2.18
metric k.g. COs-e in conventional agriculture to 0.43 metric
kg C'Oz-e with demand-responsive VFs.
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Fig. 3: Total CO, emissions of electricity consumption and
farming activities in the smart community

Utilizing VF's at 100% penetration level will shift the carbon

emissions of food production to the electricity sector. In Fig.
3, the emissions of the agriculture sector refer to conventional
farming emissions. At 100% penetration level of VFs, the food
demand of the community is exclusively met by the VFs. As
shown in Fig. 3, there is a 15 mT C'Oz-¢ increase in emissions
of the electricity sector with the increase in electricity demand
of VFs at 100% penetration level. However, it is significantly
less than 68 mT C'O3-e emissions of conventional farming in
the absence of VF's to serve the same food demand.

Fig. 4 demonstrates how VF's shift their demand based on
the CO- emissions of the generation mix and the share of
renewable generation units. The right Y-axis of Fig. 4 repre-
sents the CO2 emissions associated with electricity generation,
specifically the amount of carbon emitted per 10 MWh of
electricity generated during the day. The COy emissions of
the VF's at time ¢ are calculated as the product of the VFs’
demand at time ¢ and the C'Os-¢ emissions of the electricity
generation at time ¢. In this scenario, the VF demand is shifted
from hours with higher COy emissions to those with lower
CO4 emissions. The green-shaded area shows the hours with
reduced demand for the shiftable VFs. The red-shaded area
demonstrates the hours with increased demand of the shiftable
VFs. The total daily carbon emissions of inflexible schedule
VFs is 15.03 mT COs-e while the one procured by shiftable
VFs decreases 18.2% to 12.3 mT COs-e. Utilizing [30] to
show the tightness of SOCP relaxation in constraint (14b), the
minimum relaxation tightness measures for cases 1, 2, and 3
are 9.74, 9.21, and 9.54, respectively, which demonstrate a
tight relaxation.
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Fig. 4: Shifting the demand of VFs concerning C'O, emissions

2) Demand-responsiveness of VFEs to the COs emissions
trend: The presented model for VF's enables a flexible sched-
ule of systems within the VF in response to the CO2 emissions
trends. Fig. 5 compares the performance of the shiftable VFs
in the day during summer with one during fall, where the C'O4
emissions trends of the VFs are highly dependent on that of
the electricity network.

A different pattern of carbon emissions trend of electricity
generation leads to different carbon emissions of lkg food
produced in VFs. In Table I, the carbon emissions of VFs,
smart communities, including the electricity and agriculture
sectors, and the carbon emissions of cultivating 1 kg of food
are presented for different days of the year: 1) May 4th,
2021; 2) August 4th, 2021; 3) November 4th, 2021; and 4)



IEEE TRANSACTIONS ON SMART GRID

| coz-e vFs —coze Eec. |, |35 2

T / 309

0 E

25 &

g

208

8 15 8

& @

ARy =

3o 053

80 HHHHHH H H 008
P72 4 6 8 10 12 14 16 18 20 22 24

Time (Hour) Time (Hour)

((a)) August 4, 2021 ((b)) November 4, 2021

Fig. 5: Demand-responsiveness of shiftable VFs

February 4th, 2022, normalized according to the data provided
by California ISO [34].

TABLE 1
CARBON EMISSIONS OF THE COMMUNITY IN DIFFERENT DAYS
Day I 2 3 3
COy-¢ VFs (mT) 341 1357 1367 13.65
CO,-¢ Community (mT) 173 245 282 247
COs-¢ 1kg Food (mkg) 0425 0431 0434 0433

While the carbon emission of conventional farming to
provide the food required in the community is 68 metric tons
per day, that of VFs presented in Table I for different days has
decreased dramatically to less than 14 metric tons per day. It
is an interesting observation that VF enables such a reduction
in carbon emissions regardless of the season. The carbon
emissions of producing 1kg food from conventional farming
methods is 2.18 metric kg C'O2-e¢ while those procured by
demand-responsive VFs is decreased more than 79% to less
than 0.45 metric kg C'Oz-e across the year. Here, the 0.45
metric kg C'O5-e emissions of the VFs are calculated based on
the carbon emissions of the electricity generation they utilized
to cultivate the crops.

3) Performance of demand-responsive VFs in the operation
cost minimization problem: Here, the objective function of the
problem is to minimize the operation cost of the electricity
ADN as presented in (2). Here, VF's adjust their demand curve
to minimize the operation cost of the electricity ADN by
shifting their electricity demand to hours with lower rates. Fig.
6 a) compares the electricity demand of VF's procured by cost
minimization and carbon emissions minimization objective
functions, and Fig. 6 b) compares the carbon emissions of the
ADN when the goal of VFs is minimizing the carbon emissions
or the operation cost of the ADN for different days, where it
is shown that the carbon emissions of various days of the year
would be different with the cost minimization objective.
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Fig. 6: the demand and carbon emissions with various choices
of objective functions for Shiftable VFs

is

4) Enhance the dispatchability of solar generation by lever-
aging the flexibility of VFs: A high penetration level of
DERs (e.g., 80% for solar generation units) might lead to
curtailments within the ADN due to hosting capacity limits.
Here, it is shown that utilizing VF's enhances dispatchability
of DERs. Fig. 7 illustrates that the curtailed dispatch of
solar generation units decreases when VF's are utilized in the
ADN. The total demand of VFs at each hour shows that in
the sunny hours of the day, VFs demanded more electricity
to minimize the solar curtailment. The total curtailed solar
dispatch procured for the cost minimization problem without
VFs is 37.7M W h for 24 hours. However, the one procured for
the cost minimization problem with shiftable VFs decreased
from 71% to 10.62M W h.
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Fig. 7: The reduction in solar curtailment with shiftable VF's

5) The limitations of ADNs to host VFs: One major
challenge of hosting VF's on the ADN is the capability of the
electricity network to serve the elevated electricity demand.
Fig. 8 showcases the lost load when the VFs with 100%
penetration level are utilized to serve the demand for food of
the community. Utilizing the demand-responsive VF's mitigates
the load shedding of the ADN by shifting the demand. The
dramatic reduction in the lost load of the ADN with demand-
responsive VFs compared to the inflexible schedule is pre-
sented in Fig. 8a. The demand of the VFs procured by the
fixed and shiftable models is compared in Fig. 8b. Thus, even
with shiftable VF's demand, ADN is not ready to serve VFs
with 100% penetration level.

The modified IEEE 33-bus system can support VFs with
shiftable demand at 80% penetration level without load shed-
ding. However, the ADN can not serve inflexible schedule VFs
in peak hours as shown in Fig. 8c. Flexible VF's shifted their
load to off-peak hours, as shown in Fig. 8d to prevent load
shedding.

6) Joint cost and carbon emissions minimization: The joint
cost and carbon emissions objective function of the optimal
operation scheduling for VFs is proposed in (3), where the
first two terms are for the first-stage problem and the last term
represents the second-stage problem. Here, y is the monetizing
coefficient for carbon emissions.
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Fig. 8: The impact the shift in VF demand with high penetra-
tion levels on lost load within ADN
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C. Operation Schedule of Vertical Farms Under Uncertainties

In this case, the uncertainty in demand and solar generation
is considered with a deviation from the nominal values and
a budget for uncertain variables over the operation horizon.
Here, Algorithm 1 converges in 5 iterations with a total solve
time of fewer than 30 minutes. The total carbon emissions of
the smart community would increase with the introduction of
uncertainties. It should be noted that all VFs in the ADN are
considered with shiftable demand of the lighting and irrigation
systems (i.e., case 3). Here, the total carbon emissions of
the smart community in the presence of demand and solar
generation uncertainties with 10% deviation and 10% BoU
are increased to 29.98 metric tons COy-e from 28.18 metric
tons C'Os-e without it. Fig. 9 a) illustrates that the increase
in deviation and BoU results in an increase in total carbon
emissions. VFs adjust the operating schedule of their systems
to minimize the total carbon emissions of the community,
taking uncertainties into account. When the deterministic case
solution (i.e., the schedule of VFs’ systems) is exposed to a
stochastic case with a 5% uncertainty deviation and 20% BoU,
the carbon emissions of the VF's increase by 30% (from 26.7
mT to 34.7 mT COs-e).

Fig. 9 (b) illustrates the changes in the VFs’ schedule with
uncertainty consideration,

where the VFs’ schedule shifts towards the early morning
hours due to uncertainties in both demand and solar generation
units, underscoring the importance of considering these uncer-

tainties when determining the optimal schedule for irrigation
and lighting.
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Fig. 9: Impact of uncertainties on the schedule of VFs and
total C'Oy-e of the ADN

Increasing the deviation of uncertain variables from nominal
values increases the carbon emissions of the ADN as well
as the smart community. Besides, the adverse impact of
uncertainties is more notable at lower penetration levels of
VF's as shown in Table II. Here, deterministic case emissions
of the VF are compared with those of the uncertain case with
5% Deviation and 20% BoU when the penetration level of
VFs is 10% and 80%. It is shown that the adverse impact of
uncertainty is mitigated at higher penetration levels of VF.

TABLE II
MITIGATING THE ADVERSE IMPACT OF UNCERTAINTY WITH VF'S
10% VEF’s 80% VF’s
Pen. Level Pen. Level
Deterministic case
emissions (mT C'O2-¢) 15.14 25.6
Emissions with 5% deviation
and 20% BoU (mT COs-¢) 16.37 267
Adverse impact 8.12 4.43

of uncertainties (%)

Adding the C'Os-e of conventional farming (the remaining
20% of the community food demand) to the total carbon emis-
sions of the ADN procures the total carbon emissions of the
community. The total carbon emissions of the community with
80% penetration level of VFs for deterministic and uncertain
cases are 42.04 mT and 43.3 mT C'Os-e, respectively.

V. CONCLUSIONS

In this paper, the model of the electricity demand of
vertical farms, as a demand-responsive asset, is presented.
Coordinating VFs with other assets within the active dis-
tribution network (e.g., solar generation units and electric
vehicles) introduces several opportunities and challenges to
utilities. The preparedness of the electricity network plays
a vital role in expanding vertical farms. A framework to
utilize vertical farms in the active distribution network under
demand and solar generation uncertainties using AC power
flow constraints is presented. The proposed two-stage robust
optimization problem is solved by decomposing it using
the column and constraint generation algorithm. The dual
presentation of the relaxed second-order cone programming
problem for the inner minimization problem of the second-
stage problem is presented to reformulate the second-stage
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problem as a maximization problem. The performance of the
model in mitigating the carbon emissions of the agriculture and
electricity sectors is compared with conventional agricultural
methods. Besides, the merit of utilizing vertical farms as a
demand-responsive asset for grid operators is evaluated, where
its coordination with other DERs, such as electric vehicles
and solar generation units, can lead to 79% decrease in the
carbon emissions of food production. Besides, shifting the
demand of vertical farms to hours with a cleaner generation
mix will decrease the carbon emissions of the electricity
network. Moreover, it is illustrated that utilizing shiftable VF's
contributes to a significant improvement in the dispatchability
of solar generation resources. Finally, it is discussed that,
although uncertainty contributes to the increase in carbon
emissions, a higher penetration level of vertical farms would
mitigate such an adverse impact. The suggested future work
is the long-term expansion planning of vertical farms within
the distribution network.
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