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Abstract

This paper presents a reformulation for the automatic generation control (AGC)
in a decomposed convex relaxation algorithm. It finds an optimal solution to the AC
optimal power flow (ACOPF) problem that is secure against a large set of contingen-
cies. The original ACOPF problem which represents the system without contingency
constraints, is convexified by applying the second-order cone relaxation method. The
contingencies are filtered to distinguish those that will be treated with preventive ac-
tions from those that will be left for corrective actions. The selected contingencies for
preventive action are included in the set of security constraints. Benders decomposition
is employed to decompose the convexified Security-Constrained ACOPF problem into
a master problem and several security check sub-problems. Sub-problems are evaluated
in a parallel computing process with enhanced computational efficiency. AGC within
each sub-problem is modeled by a set of proposed valid constraints, so the procured
solution is the physical response of each generation unit during a contingency. Benders
optimality cuts are generated for the sub-problems having mismatches and the cuts are
passed to the master problem to encounter the security-constraints. The accuracy of
the relaxation results is verified using the presented tightness measure. The effective-
ness of the presented valid AGC constraints and scalability of the proposed algorithm
is demonstrated in several case studies.

Keywords:Automatic generation control, AC optimal power flow, contingency
analysis, parallel computing, Benders decomposition
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1 Nomenclature

1.1 Indices

e ∈ E Index of line in the set of lines
f ∈ F Index of transformer in the set of transformers
g ∈ G Index of generator in the set of generators
k ∈ K Index of contingency in the set of contingencies
i ∈ I Index of bus in the set of buses
ig Index of bus connected to generator

1.2 Variables

cg Generation cost of generator (g) as a function of active power (USD/h)
pije Line e real power from origin bus i to bus j

pijf Transformer f real power from origin bus i to bus j

pg Generator g real output power
qije Line e reactive power from origin bus i to bus j

qijf Transformer f reactive power from origin bus i to bus j

qg Generator g reactive output power
ui Bus i voltage magnitude
ei Real part of voltage at bus i
fj Imaginary part of voltage at bus j
∆k Contingency k scale factor on generator participation factors defining

generator real power contingency response

σ
P+/−
ik Apparent power mismatch for contingency k in bus i real power posi-

tive/negative parts

σ
Q+/−
ik Apparent power mismatch for contingency k in bus i reactive power

positive/negative parts
σek Apparent power mismatch for contingency k in line e
σfk Apparent power mismatch for contingency k in transformer f
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1.3 Parameters

be Line e series susceptance
bf Transformer f susceptance
bCHe Line e total charging susceptance
ge Line e series conductance
pg Generator g real power maximum
p
g

Generator g real power minimum

qg Generator g reactive power maximum
q
g

Generator g reactive power minimum

Re Line e apparent current maximum in base case

R
K

e Line e apparent current maximum in contingencies
sf Transformer f apparent power maximum in base case
sKf Transformer f apparent power maximum in contingencies
ui Bus i maximum voltage magnitude in the base case
ui Bus i minimum voltage magnitude in the base case
uKi Bus i maximum voltage magnitude in contingencies
uKi Bus i minimum voltage magnitude in contingencies
αg Participation factor of generator g in real power contingency response
δ Weight on base case in objective
bMf Transformer f magnetizing susceptance
bFSi Bus i fixed shunt susceptance
gf Transformer f series conductance
gMf Transformer f magnetizing conductance
gFSi Bus i fixed shunt conductance
pLi Bus i constant real power load
qLi Bus i constant reactive power load
τf Transformer f tap ratio
tm Magnitude of complex transformer ratio
tr Real part of complex transformer ratio
ti Imaginary part of complex transformer ratio

2 Introduction

The inclination to optimally operate the power system may lead to operating points close
to the boundary of the security limits. Severe contingencies occurrence in a power system
may lead to instabilities or blackouts. Thus, it is necessary to secure the power system
using preventive or corrective control actions. The security assessment is one of the most
fundamental elements in power system operation, where its main objective is to ensure that
the system is secure with respect to contingencies.

An optimal power flow (OPF) problem finds an optimal operating point for an objec-
tive function under given constraints. Security-constrained optimal power flow (SCOPF)
concerns contingency constraints within an OPF problem [1]. It considers contingencies in-
volving the disruption of generating stations and transmission lines, where controlling actions
are carried out during power system operation and planning stage. Steady-state security is
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the capability of the system to function continuously within the rating of the equipment after
a contingency has occurred [2]. The SCOPF problem is mainly classified into two classes:
corrective and preventive formulations [2], [3]. The corrective formulation reschedules the
power flow after the outage has occurred. The corrective SCOPF includes one set of con-
trol variables for normal operating conditions and another set of alteration variables for the
contingency scenarios. The control variables in post-contingency are allowed to remove the
violations caused by contingencies. The corrective model requires additional constraints and
variables and many reschedules are required to perform the corrective actions. An iterative
approach to solving corrective SCOPF is proposed in [4]. It considers a subset of potential
contingencies, a steady-state security analysis, a contingency filtering technique, and check-
ing post-contingency state feasibility blackbut it does not consider the parallel computation
framework to speed-up computations. black On the other hand, preventive formulation
considers normal situation control variables to minimize the cost function. The preventive
SCOPF deals with one set of variables to fulfill both normal and contingency circumstances.
A dispatch involving security constraints implements preventive control and thus better sys-
tem security is achieved [3]. The preventive generation rescheduling scheme using trajectory
sensitivity analysis is proposed in [5] black but the algorithm is not robust. black An effective
AC corrective/preventive contingency dispatch for the security-constrained unit commitment
model to minimize the power system operational cost while preserving the system security is
presented in [6] black but it does not consider parallel calculations for SCOPF subsystems.
black The preventive SCOPF should only be applied when corrective actions are not enough
or cannot be applied quickly [7].

The main drawback of traditional SCOPF algorithms is the negligence of stability re-
quirements and problem size because it is challenging to incorporate these in a forthright way
[8]. Monte Carlo method is used for post-fault stability assessment and high-density sam-
pling of operating points through time-domain simulations in [9]. A generation rescheduling
method to increase the dynamic security of power systems is proposed in [10]. black How-
ever, it does not model optimization problem and lacks various facets including prefault and
postfault thermal and voltage limits of system operation. black A semi-definite programming
relaxation to develop minimum singular value into voltage stability constrained OPF model
is studied in [11]. black A multi-agent predictive control model for load frequency control to
increase the damping of oscillations in a power system using the Bat Inspired Algorithm is
presented in [12]. The security of the smart meter data is analyzed using the machine learn-
ing techniques in [13]. black The recognition of critical control violations is very essential
because their location in the system is critical for deciding on the installation of additional
controls during the planning and the activation of the same controls during operation [14].
The solution of an optimization problem over a relaxed set gives lower bound on the optimal
generation cost. However, the solution may risk system security and may not be feasible [15].
A sparse tableau formulation for node-breaker representations in security-constrained opti-
mal power flow is proposed in [16]. blackHowever, it does not consider contingency filtering
for large scale power systems and it leads to high computation burden.black

AGC is a speed governing property of a generation unit. It utilizes the power generation
capacity to optimally distribute the power during disturbances in an interconnected system
while minimizing the real-time generation cost. It offers significant cost savings under load
variability and uncertain conditions while constraining the thermal rating limits of tie-lines.
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The AGC implemented in [17] ignores the tie-line thermal limits. The thermal limits on
the tie-line are considered in [18] but AGC is not considered here. Besides, the corrective
SCOPF presented in [19] does not consider the AGC response of generation units.

A large power system network involving numerous contingencies results in greater exe-
cution time and memory requirements. Thus, algorithms are created to consider the only
potentially binding contingencies into the methodology [20]. The number of contingencies
can be reduced using screening procedures [21]. The network dimension reduction technique
by ignoring the less affected areas of the system is proposed in [22]. Two contingency fil-
tering techniques depending upon the post-contingency violations are proposed in [20]. The
ranking procedure chooses contingencies based on a severity index that has a pre-defined
threshold limit. A bi-level maximum-minimum optimization model to find the critical con-
tingencies is developed in [7]. A contingency selection procedure based on the contingency
explicit ranking is discussed in [23].

The security-constrained optimal power flow problem is a large scale optimization prob-
lem. One technique to solve SCOPF is Benders decomposition, which can take advantage
of problem structure black[24]black. Benders decomposition reduces the complexity of the
problem by decomposing the original problem into master and various sub-problems [25].
Benders decomposition is used to solve the optimal power flow master problem in [26]. But
the number of decision variables is greater for large power systems. It assumes short-term
emergency ratings quite high that could result in voltage collapse or cascading outages before
the corrective actions are effective. Benders decomposition is used to decompose the SCOPF
problem into sub-problems associated with each contingency [24].

There are three main challenges regarding the security-constrained ACOPF problem:
considering full AC power flow constraints, modeling the AGC response, and scalability to
tackle large scale problems with a large set of contingencies. For example, the contingency
ranking method proposed in [27] is not necessarily computationally efficient for a large net-
work with numerous potential contingencies. Another example is the utilization of Benders
decomposition to enhance the scalability in [28] that considered DC power flow constraints,
and not AC power flow constraints.

2.1 Contributions

black The main contributions of this paper are listed as follows:

1. Modeling the AGC response of generations units in each contingency by introducing
a set of valid constraints presenting the AGC response to changes in the system and
integrate it with full AC power flow constraints. Thus, the procured solution presented
in the security check sub-problem is the physical response of the system in case of
contingency.

2. Integrating the convexified AC-OPF problem formulation in the Bender’s decomposi-
tion for both master problem and each contingency check sub-problems. The second-
order cone relaxation of the master problem is employed to present the master problem
in convex form. A tightness measure method is utilized to verify the merit of the em-
ployed convex relaxation approach.
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3. Applying parallel processing techniques along with leveraging various level of contin-
gency filtering to selected security check sub-problems. The presented results verifies
that compared to the traditional approaches, this presents significant improvement in
solving problems with a large number of contingencies.

black

3 Problem Formulation

The original problem of SCOPF is presented in two parts which include the base problem
and the constraints associated with each contingency. The base case problem formulation is
given in (1). The piece-wise objective function is represented by (1a), where h1 and h2 are
linear function of bus injection mismatches, cg is the cost of generation units, and σP±,Q±ik

are the mismatches due to contingencies on each bus. Base case bounds on voltage, real
power, and reactive power are constrained by (1b), (1c), and (1d) respectively. Base case
real and reactive power flows into a transmission line at the origin buses are defined by
(1e) and (1f) respectively. The real and reactive power flow into a transformer at the origin
buses in the base case is represented by (1g) and (1h) respectively. Bus real and reactive
power balance constraints in the base case are defined by (1i) and (1j) respectively. The base
case line current rating at the origin bus is represented by (1k). The power ratings for the
transformer in the base case at the origin bus are shown in (1l).

min
∑
g∈G

cg +
1

| K |
∑
k∈K

(
∑
i

g(σP+
ik , σP−ik , σQ+

ik , σQ−ik ) +
∑
e∈E

h1(σek) +
∑
f∈F

h2(σfk)) (1a)

subject to:

ui ≤ ui ≤ ui ∀i ∈ I (1b)

p
g
≤ pg ≤ pg ∀g ∈ G (1c)

q
g
≤ qg ≤ qg ∀g ∈ G (1d)

pije = ge(e
2
i + f 2

i )− ge(eiej + fifj)− be(eifj − ejfi) ∀e ∈ E (1e)

qije = −(be + bCHe /2)(e2i + f 2
i ) + be(eiej + fifj)− ge(eifj − ejfi) ∀e ∈ E (1f)

pijf = (gf/τ
2
f + gMf )(ei

2 + fi
2)− gf/τf (eiej + fifj)− bf/τf (eifj − ejfi) ∀f ∈ F (1g)

qijf = (bf/τ
2
f + bMf )(ei

2 + fi
2) + bf/τf (eiej + fifj)− gf/τf (eifj − ejfi) ∀f ∈ F (1h)∑

g∈Gi

pg − pLi − gFSi u2i −
∑
j∈δ(i)

pije −
∑
j∈ψ(i)

pijf = 0 ∀i ∈ I (1i)

∑
g∈Gi

qg − qLi − bFSi u2i −
∑
j∈δ(i)

qije −
∑
j∈ψ(i)

qijf = 0 ∀i ∈ I (1j)

√
(pije )2 + (qije )2 ≤ Re ∀e ∈ E (1k)√
(pijf )2 + (qijf )2 ≤ sf ∀f ∈ F (1l)
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The constraints associated with each contingency are given in (2). For each contingency,
bounds on voltage, real power and reactive power are represented by (2a), (2b), and (2d)
respectively. The constraints (2c) and (2e) enforce the real and reactive power of generators
that are not active during contingency to zero. The real and reactive power flow into a trans-
mission line at the origin bus during a contingency are defined by (2f) and (2g) respectively.
The real and reactive power flow into a transformer at the origin buses in each contingency
are shown by (2h) and (2i) respectively. Bus real and reactive power balance constraints
during a contingency along with soft constraint violation variables are represented by (2j)
and (2l) respectively. The constraints (2k) and (2m) define that soft-constraint violation
variables are positive. During each contingency, the line current rating at the origin bus
with violation variable (σek) is represented by (2n) and (2o). The transformer power ratings
during a contingency at the origin bus along with constraint violation variables are shown
in (2p) and (2q). The constraint (2r) shows that an online generator but not selected to
respond to contingency, retains its real output power from base case.

uKi ≤ uik ≤ uKi ∀k ∈ K, i ∈ I (2a)

p
g
≤ pgk ≤ pg ∀k ∈ K, g ∈ Gk (2b)

pgk = 0 ∀k ∈ K, g ∈ G \ Gk (2c)

q
g
≤ qgk ≤ qg ∀k ∈ K, q ∈ Gk (2d)

qgk = 0 ∀k ∈ K, g ∈ G \ Gk (2e)

pijek = ge(e
2
ik + f 2

ik)− ge(eikejk + fikfjk)− be(eikfjk − ejkfik) ∀k ∈ K, e ∈ E (2f)

qijek = −(be + bCHe /2)(e2ik + f 2
ik) + be(eikejk + fikfjk)− ge(eikfjk − ejkfik) ∀k ∈ K, e ∈ Ek

(2g)

pijfk = (gf/τ
2
f + gMf )(eik

2 + fik
2)− gf/τf (eikejk + fikfjk)− bf/τf (eikfjk − ejkfik) ∀k ∈ K, f ∈ Fk

(2h)
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qijfk = (bf/τ
2
f + bMf )(eik

2 + fik
2) + bf/τf (eikejk + fikfjk)− gf/τf (eikfjk − ejkfik) ∀k ∈ K, f ∈ Fk

(2i)∑
g∈Gik

pgk − pLi − gFSi u2ik −
∑
j∈δk(i)

pijek −
∑

j∈ψk(i)

pijfk = σP+
ik − σ

P−
ik ∀k ∈ K, i ∈ I (2j)

σρik ≥ 0 ∀k ∈ K, i ∈ I, ρ = {P±} (2k)∑
g∈Gik

qgk − qLi + bFSi u2ik −
∑
j∈δk(i)

qijek −
∑

j∈ψk(i)

qijfk = σQ+
ik − σ

Q−
ik ∀k ∈ K, i ∈ I (2l)

σρik ≥ 0 ∀k ∈ K, i ∈ I, ρ = {Q±} (2m)√
(pijek)

2 + (qijek)
2 ≤ R

K

e + σSek ∀k ∈ K, e ∈ Ek (2n)

σSek ≥ 0 ∀k ∈ K, e ∈ Ek (2o)√
(pijfk)

2 + (qijfk)
2 ≤ sKf + σSfk ∀k ∈ K, f ∈ Fk (2p)

σSfk ≥ 0 ∀k ∈ K, f ∈ Fk (2q)

pgk = pg ∀k ∈ K, g ∈ Gk \ GP (2r)

The constraints presented in (2) do not cover the real and reactive power dispatch of
generators participating in the contingency response. The real power (pgk) of generator in a
contingency k is governed by the constraints given in (3). Here, each generator has a pre-
defined response rate given by αg which is a portion of the total response given in ∆k for the
contingency k. This set of constraints represents the AGC response of the active generation
units in the contingency, where the dispatch of generation units during the contingency k is
determined. If the determined value is outside of the physical limits of a generation unit,
the dispatch is set to the physical limit and the AGC response is overwritten. The reactive
power is subject to the constraints given in (4), the voltage of buses with a generation bus is
preserved to the values before the contingency if the reactive power limits are not reached.

{p
g
≤ pgk ≤ pg & pgk = pg + αg∆k}

{pgk = pg & pgk ≤ pg + αg∆k}

{pgk = p
g

& pgk ≥ pg + αg∆k}


k ∈ K, g ∈ GPk (3)

{q
g
≤ qgk ≤ qg&

√
e2igk + f 2

igk
=

√
e2ig + f 2

ig
}

{qgk = qg&
√
e2igk + f 2

igk
≤

√
e2ig + f 2

ig
}

{qgk = q
g
&
√
e2igk + f 2

igk
≥

√
e2ig + f 2

ig
}


k ∈ K, g ∈ Gk (4)
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These constraints represent the voltage control of the generation bus. If the upper limits
of the reactive power generation are reached, the voltage on the connected bus is equal lower
than that before the contingency. If the lower limits of the reactive power generation are
reached, the voltage on the connected bus is equal greater than that before the contingency.
The presented constraints in (3) and (4) are not straightforward to model in an optimization
problem and will generally require employment of binary variables which cause an increase
in the computation burden of each sub-problem. A set of valid constraints are introduced in
the next section to solve the problem without employing binary variables which will adversely
impact the computational efficiency of solving the problem.

4 Solution Method

Solving the problem presented in section 3 has three challenges. First, the problem is nonlin-
ear and non-convex. Thus, it is challenging to solve in polynomial time. Therefore, a convex
relaxation technique is presented in subsection 4.1 to address this challenge. Second, the
presented set of constraints in (3) and (4) are non-linear and cannot be directly incorporated
into the AC-OPF problem formulation. Thus, a set of valid constraints are introduced in
subsection 4.2 to address this challenge. Third, the set of contingencies dramatically in-
creases the size of the problem. To address this challenge, a decomposition method tailored
for the convexified problem is employed and it is discussed in subsection 4.3.

4.1 Formulating the Base Case Problem as a Second-Order Con-
vex Relaxation

The base case problem presented in (1) is a non-convex optimization problem. The non-
convexity arises because of the expressions e2i + f 2

i , eiej + fifj, and eifj − ejfi. To convexify
the problem, new variables are defined as cii := e2i +f 2

i , cij := eiej+fifj and sij := eifj−ejfi.
The revised base problem formulation is given in (5). The objective is to minimize the sum
of the cost of generation and weight on the base case. Base case real and reactive power flow
into a transmission line at the origin buses from (1e) and (1f) are updated to (5b) and (5c)
respectively. The real and reactive power flow into a transformer at the origin buses in the
base case from (1g) and (1h) are revised to (5d) and (5e) respectively. The complex voltage
magnitude at bus i is restricted by the constraint (5f). The characteristics of cij and sij are
given in (5g) and these new variables satisfy the relationship in (5h) which is a second-order
cone constraint. The base case problem is now convex and can be solved using off-the-shelf
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solvers.

min
∑
g∈G

cg + δcσ (5a)

subject to:

(1b)− (1d)

pije = gecii − gecij − besij ∀e ∈ E (5b)

qije = −(be + bCHe /2)cii + becij − gesij ∀e ∈ E (5c)

pijf = (ge + gii)/tm
2cii + (−getr + beti)/tm

2cij + (−betr − geti)/tm2sij ∀f ∈ F , e ∈ E (5d)

qijf = −(be + bii)/t
2
mcii − (−betr − geti)/tm2cij + (−getr + beti)/tm

2sij ∀f ∈ F , e ∈ E
(5e)

(1i)− (1l)

u2i ≤ cii ≤ u2i i ∈ I (5f)

cij = cji, sij = −sji (i, j) ∈ E (5g)

c2ij + s2ij ≤ ciicij (i, j) ∈ E (5h)

One approach to check the gap between the original problem and the proposed method
is to find the difference between the objective values and divide by the original problem
objective. This method is used to check the gap of the solution in [29]. In second-order
convex relaxation formulation, the constraint (5h) is in conic relaxation form. An alternative
approach to check the tightness of the procured relaxation form is the difference between
c2ij+s

2
ij and ciicjj as given in [30]. In a radial network, the difference is zero and the relaxation

is exact due to the angles that can be uniquely identified by an arbitrary voltage reference.
Nevertheless, in practice, the difference exists due to numerical precision issues but it is
close enough to render a good quality solution. The quality of the solution is determined by
measuring how far the difference is from zero. The negative logarithmic of the difference is
taken due to the small value. Thus, the mathematical representation of tightness measure
given in (6) can be leveraged as a post-process to determine the gap of the procured solution
of the relaxed problem. Here, (T ) is the tightness measure for each pair i, j and cii, cjj,
cij, sij associated with pair i, j. Therefore, this gap indicator is applied in the algorithm as
a measure of exactness for the procured solution from the convex relaxation problem. The
higher the procured values, the tighter the relaxation is to the original non-convex problem.

Tij = −log|c2ij + s2ij − ciicjj| (6)

4.2 Modeling AGC Response

This section addresses the generator real power contingency (3) and reactive power contin-
gency (4) responses. Recurrent changes to the output of a power generator are necessary
because the generated power and load should be balanced during a contingency in the power
system. A set of valid constraints are presented in (7) for modeling the AGC response during
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a contingency.

(pgk − (pg + αg∆k))(pgk − pg) ≤ 0 ∀k ∈ K, g ∈ GPk (7a)

(pgk − (pg + αg∆k))(pg − pgk) ≥ 0 ∀k ∈ K, g ∈ GPk (7b)

(cig ,ig − cigk,igk)(qgk − qg) ≥ 0 ∀k ∈ K, g ∈ GPk (7c)

(cigk,igk − cig ,ig)(q
g
− qgk) ≥ 0 ∀k ∈ K, g ∈ GPk (7d)

The generator real power contingency response presented in (3) is represented by (7a) and
(7b). If the real power generation dispatch is in an open interval within the generation limits,
the dispatch is determined using the participation factor and system wide changes of each
contingency i.e. LHS of constraints (7a) and (7b) are both zero. If the real power generation
dispatch hits the physical limits, the dispatch is equal to the physical limit and is not based
on the participation factor and base case power dispatch. If the upper limits reached, LHS
of (7a) is zero and the second term on the LHS of (7b) is negative, so its first term should be
smaller than or equal to zero i.e the actual dispatch being equal or smaller than the desired
one determined by the participation factor. Similarly, if the lower limits reached, LHS of
(7b) is zero and the second term on the LHS of (7a) is negative, so its first term should be
greater than or equal to zero i.e the actual dispatch being equal or greater than the desired
one is determined by the participation factor.

Moreover, reactive power contingency response presented in (4) is revised to (7c) and
(7d). The voltage of buses with a generator connected to them is equal to the base case
voltage during a contingency if the reactive power dispatch of that generator is within an
open interval of its physical limits, where the LHS of (7c) and (7d) are zero. If the upper
limits of the reactive power dispatch is reached, LHS of (7c) is zero and the second term on
the LHS of (7d) is negative, so its first term should be smaller than or equal to zero i.e the
generation bus voltage during the contingency is equal or smaller than the that of the base
case. Similarly, if the lower limits of the reactive power dispatch reached, LHS of (7d) is zero
and the second term on the LHS of (7c) is negative, so its first term should be smaller than
or equal to zero i.e the generation bus voltage during the contingency is equal or greater than
the that of the base case. Thus, the procured constraints represent a set of valid constraints
that can be integrated into the SCOPF problem formulation without introducing any binary
variables. It should be noted that adding the equivalent constraints for the AGC response
for each sub-problem will render a nonlinear problem. However, the complexity introduced
by these constraints is not troublesome compared to the nonlinear inherited from AC power
constraints that are treated with convex relaxation. These constraints presented in (7a)-(7b)
and (7c)-(7d) are pairs which at least one of them is zero all the time. Beside, not all of these
constraints are active in the solution process for solver. Employing these constraints will
significantly reduce the computation time for the AGC response in the SCOPF calculations
as demonstrated in the case studies.

4.3 Problem Decomposition

To enable solving large-scale optimization problems, Benders decomposition is implemented
and it is described in this subsection. The flowchart of the Benders decomposition is given
in Fig. 1.
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1. Solve the initial master problem MP1 using the convex relaxation method presented
in subsection 4.1. Obtain the lower bound (zlower) for the objective value. If MP1 is
infeasible, the original problem is infeasible.

The abstract formulation of the master problem is given in (8).

min
x∈X ,u∈U

cTx (8a)

s.t. Ax +Bu = d (8b)

Cx +Du ≤ e (8c)

The equality constraint (8b) represents the equality constraints in (5) and the inequality
constraint (8c) represents the inequality constraints in (5).

2. Apply the contingency filtering technique to build a static ordering of all contingencies.
The procured contingency filter ranks the components based on their significance in
terms of utilization in the system. Thus, the contingencies that lead to the largest
constraint violations are selected using the procured mismatches and a Benders cut for
each violated contingency is added to the master problem. Three levels of filters are
applied as shown in Fig. 2, where 1% filter represents the most critical contingencies.

3. Pass the master problem solution to each sub-problem and solve it in a parallel comput-
ing process. The parallel computation technique accelerates the sub-problems solution
because it involves multiple workers solving the security check sub-problems. It offers
an environment that applies message passing interface to allow multiple workers to
solve contingencies in a distributed memory. Each worker has its own private memory
in a distributed memory environment. Message passing interface is a form of communi-
cation used in parallel computation that helps different workers to communicate with
each other. In the proposed algorithm, there is one master worker and workers 1, ..., n,
e.g. n = 6 in Fig. 2. The workers 1, ..., n point their nodes towards the master worker.
The master worker sends functions, data packets and signals to workers 1, ..., n using
message passing interface. The filtered contingencies are distributed among the avail-
able workers by dividing the total number of contingencies and the workers. Finally,
the workers return zupper of the objective value for each sub-problem in the array. The
abstract composition of sub-problem is given in (9).

min
xk∈X ,uk∈U

f(σ) (9a)

s.t. Fk(xk,uk, σk) = 0 : λk (9b)

Gk(xk,uk) ≥ 0 : µk (9c)

The subproblem objective is to minimize the mismatches. The equality constraint (9b)
represents the equality constraints in (7) and the inequality constraint (9c) represents
the inequality constraints in (7).

The Benders cut for the master problem is given in (10).

zlower ≥ dTy + (h− Fy)T ûp (10)
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4. Obtain the upper bound (zupper) of the objective value from sub-problems solution.
Check the mismatch between zupper and zlower. If there is no mismatch, the optimal
solution is procured. Otherwise, continue to the next step.

5. For each sub-problem, a Benders cut is generated. The cuts are aggregated and applied
to the master problem MP2 with cuts.

6. Repeat steps 3-5 until the total mismatch is less than a desired threshold.

5 Case Study

In this section, three case studies are presented to demonstrate the effectiveness of the
proposed algorithm for security-constrained AC-OPF. The first case study uses IEEE 14-
bus system, the second uses 500-bus system, and the third uses 2000-bus system. The case
studies are performed on a standard PC with an Intel Core i7-9700K CPU running at 3.60
GHz and 16.0 GB RAM. Julia built-in PMAP function is used for solving the sub-problems
in parallel. PMAP applies the sub-problem constraints concurrently to the contingencies
present in the array.

5.1 IEEE 14-Bus Power System

In this case, a 14-bus power system, which consists of 14 buses, 5 generating units and 11
loads is deployed. This network contains 2 contingency scenarios where the outages occur
on the branch connected between bus 6 and 12 and the least utilized generator 5 connected
to bus 8. First, the master problem during the normal operating conditions is solved and
the voltages at each bus are recorded as shown in column ui of Table 1 corresponding to
each bus index i. For contingency scenario, the branch is taken out of system and the power
flow is performed to identify the mismatches. The voltages during the branch contingency at
each bus are shown by ui1. For the case of least utilized generator contingency, the voltages
are shown in column ui2. The voltages of bus 1 for each contingency stays the same because
it is a PV bus. This indicates the success of the presented solution method to preserve the
voltage-controlled buses. The only exception is the voltage of bus 8 which is permitted to
variate because the contingent generator is connected to it. The generator index column
indicates the connection of each generator to the particular bus.

Table 2 shows the automatic generation control response during each contingency. For
the branch contingency, the real power generation pg1 from generators 1 − 3 and 5 is in-
creased while it is the same for generator 4 because it was hitting the upper limit during
the normal operating conditions. This indicates the success of the presented reformulation
in preserving the AGC response of generation units under contingency. The reactive power
qg1 for generators 1, 3 and 5 is increased while it is decreased for 2 and 4. As these reactive
power values are within the limits of each generation unit, it is consistent with the voltage
value presented in Table 1. When the least utilized generator 5 is under contingency, the
real and reactive powers from it are zero. In this case, the real power pg2 for generators
1− 3 is increased while it is the same for generator 4 because it reached the maximum limit.
The reactive power qg2 is increased for generators 1− 3 while it is decreased for generator 4.
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The minimum and maximum values of real and reactive power, as well as the participation
factors for each generation unit, are shown in Table 2. The value of ∆1 is 0.02 MW for
branch contingency and the value of ∆2 is -0.106 MW for generator contingency.

The tightness measure of the procured solution obtained from convex relaxation is deter-
mined using (6) and tabulated in Table 3. The gap between the proposed solution and the
original problem is very small because the logarithmic value of the tightness is in-between 7
and 10. Thus, the tightness of the procured relaxation scheme represents that the proposed
scheme is very close to the original one and a good quality solution is obtained.

5.2 500-Bus Power System

In this case, a 500-bus power system is utilized consisting of 90 generators, 200 loads and
131 transformers. It consists of 51 transformer contingencies and 326 branch contingencies.
Table 4 shows the results when the contingency filter is 0.5, which means that the top
critical 50% of total contingencies are taken into account. blackThe master problem objective
value is written in 0th iteration and is determined without considering the violations in the
optimization problem. This objective represents the operation cost ($) when the system
operates in normal situation without any contingency. blackWith each iteration, the number
of sub-problem contingencies that violated the rating decreases due to the Benders cuts
applied to the master problem. An updated value of the objective is obtained after applying
the cuts to the master problem. The objective value is increased from $27, 529 to $73, 491 in
9 iterations. The total mismatch for the contingencies decreases sharply with each iteration.
The mismatch in 2nd iteration (21,379) is less than one half the value in 1st iteration (53,192).
The algorithm converges in 9th iteration with 0 mismatch.

By selecting critical contingencies active in the 500-bus power system, the effect on ob-
jective, the number of iterations, and the parallel (Par. Time) versus non-parallel (Series
Time) solution convergence time of contingencies is tabulated in Table 5. The percentage of
active contingencies is decreased from 99% to N−1. When 99% contingencies are active, the
solution is converged in 188 iterations and convergence time is 58, 874 seconds for parallel
contingency solution case and very large for the non-parallel contingency solution case. For
N − 1 contingency scenario, the solution is converged in 3 iterations and it took 183 seconds
for the parallel and 494 seconds for the non-parallel situations. The merit of the parallel
computation is that it solves the sub-problems on average of 18 times faster. For non-parallel
cases, the computation time becomes infinitely large when large set of contingencies are eval-
uated. Thus, the contingency filtering technique ensures the security check of the procured
AC-OPF solution by only considering the critical contingencies and the parallel computation
approach make that happen in a time efficient way.

5.3 2000-Bus Power System

To demonstrate the efficiency of the proposed algorithm on a large power system network,
a 2000-bus power system is considered. It consists of 544 generators, 1,125 loads, and
847 transformers. There are 432 generator contingencies and 2,753 branch contingencies
summing to 3,185. In this case, top 10% of critical contingencies are considered. The
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mismatch, objective value, and contingencies that violated the power limits for each iteration
are tabulated in Table 6.

The master problem objective value is $741,696. During the first iteration, the objective
value is increased to $964,912 and the contingencies that violated the limits are 320. The
value of mismatch is decreased sharply from 352, 940 to 0 in 5 iterations. black It took 23
hours and 50 minutes for the algorithm to converge. black The effectiveness of the proposed
algorithm can be validated from the fact that after 1st iteration, the violated contingencies
decreased from 320 to 33 and mismatch reduced from 352, 940 to 35, 858. blackBy considering
5% critical contingencies, the algorithm converged in 12 hours and 18 minutes. blackThe
algorithm is capable of solving critical contingencies from large number of contingencies in
a time efficient way. Thus, the presented algorithm is computationally efficient for a large
network with potential contingencies.

6 Conclusion

This paper proposed a reformulation for the automatic generation control in a decomposed
convex relaxation algorithm to find the optimal solution to the ACOPF problem which is
secure against a large number of contingencies. To solve this problem, the original ACOPF
problem representing the system without contingency constraints is convexified by leverag-
ing the second-order cone relaxation method. The contingencies are filtered to determine
the corrective or preventive actions and the selected contingencies for preventive action are
considered in security constraints. Benders decomposition technique is utilized to decom-
pose the security-constrained ACOPF into a master problem and several security check
sub-problems. The sub-problems are evaluated in a parallel computing process to enhance
the computational efficiency. AGC is modeled by a set of proposed valid constraints so that
the solution obtained in each security check sub-problem is the physical response of each
generation unit during contingency. Several case studies are presented to demonstrate the
competence of the proposed valid AGC constraints and the scalability of the presented algo-
rithm for the security-constrained ACOPF. black An interesting future work is to convexify
the automatic generation control response in the security-constrained AC optimal power flow
calculations.black
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Table 1: black Bus Voltages during Base and Contingency Cases
Bus Index (i) ui ui1 ui2 Generator Index

1 1.098 1.098 1.098 1

2 1.093 1.093 1.093 2

3 1.068 1.068 1.068 3

4 1.071 1.071 1.069 -

5 1.076 1.074 1.073 -

6 1.099 1.099 1.099 4

7 1.095 1.089 1.080 -

8 1.099 1.099 1.080 5

9 1.093 1.079 1.073 -

10 1.087 1.074 1.069 -

11 1.090 1.081 1.079 -

12 1.087 1.058 1.086 -

13 1.083 1.073 1.079 -

14 1.073 1.060 1.059 -
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Table 2: black Automatic Generation Control Response during a Contingency
Generator Index 1 2 3 4 5

pg 37.96 83.29 5.80 110.50 0.32

qg 1.84 18.69 27.62 -4.98 2.85

pg1 38.07 83.67 6.79 110.50 0.38

qg1 2.57 17.53 27.86 -14.16 6.70

pg2 38.08 83.71 6.91 110.50 0

qg2 3.16 19.41 29.00 -11.40 0

pmin 37.96 48.15 5.80 11.46 0.32

pmax 245.45 157.50 82.50 110.50 80.14

qmin -132.20 -76.98 -0.88 -19.11 -8.03

qmax 76.06 36.17 48.51 19.47 19.24

α 5 19 49.3 38.8 3
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Table 3: black Tightness Measure of Bus-pairs of the IEEE 14-bus System
Bus-pair Tij Bus-pair Tij Bus-pair Tij

(1,2) 8.0012 (6,11) 7.7436 (5,6) 8.1014

(1,5) 8.0060 (6,12) 7.7453 (13,14) 8.0052

(2,3) 8.0053 (6,13) 7.7453 (4,9) 7.7431

(2,4) 8.0036 (7,8) 7.6488 (12,13) 8.0024

(2,5) 8.0036 (7,9) 8.7622 (4,7) 9.8836

(3,4) 8.0029 (9,10) 8.0015 (10,11) 8.0032

(4,5) 8.0008 (9,14) 8.0042
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Table 4: black Summary of Results for 500-Bus System
Iterations [n] Violations Objective [$] Mismatch

0 - 27,529.7 -

1 188 73,491.5 53,192.4

2 93 73,491.5 21,379.8

3 46 73,491.5 9,164.1

4 22 73,491.5 4,812.1

5 11 73,491.5 2,379.3

6 5 73,491.5 937.8

7 2 73,491.5 362.0

8 1 73,491.5 170.5

9 0 73,491.5 0
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Table 5: black Different Contingency Filters to observe the effect on Objective Value, Itera-
tions and Solution Convergence Time

Filter Obj. [$] Iters. Par. Time [s] Series Time [s]

0.01 131,234.2 188 58,874 N/A

0.25 93,796.6 18 4,941 139,015

0.5 73,491.5 9 2,123 46,814

0.75 45,849.1 5 765 16,053

0.99 28,333.5 3 183 494
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Table 6: black Summary of Results for 2000-Bus System
Iterations [n] Violations Objective [$] Mismatch

0 - 741,696.3 -
1 320 964,912.7 352,940.7
2 33 964,912.7 35,858.7
3 3 964,912.7 3,291.1
4 1 964,912.7 936.9
5 0 964,912.7 0
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