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Abstract— Power flow is a fundamental problem for analyzing 

the power system. It is to solve a set of equations with quadratic 
terms. Procuring a reliable solution methodology for this problem 
is challenging as the feasibility region for this problem is non-
convex. Iterative approaches were employed to solve the problem 
which may fail to provide a solution under certain circumstances 
such as bad initial point. In this paper, a solution methodology that 
is capable of providing a reliable solution to the power flow 
problem is presented. First, by exploiting sparsity in the power 
network, a convex relaxation for the problem is presented using 
the first order of the Lasserre hierarchy of moment relaxations. 
Then a distributed approach using Jacobi-Proximal alternating 
directions method of multipliers is implemented to efficiently solve 
the power flow problem. To solve the sub-problems within JP-
ADMM approach, the second order of the Lasserre hierarchy of 
moment relaxations is employed. To illustrate the effectiveness of 
the proposed approach, several case studies are presented. 
 

Index Terms— Convex relaxation, Jacobi-Proximal ADMM, 
distributed optimization, Power flow. 
 

NOMENCLATURE 
 
Variables and Indices: 

   Index for each maximal clique within the network 
  Index of bus  

 Moment relaxation operator for clique c with order r  

 Lifting operator for clique c 

 Eigenvector of the moment relaxation matrix associated 
with maximal clique   

  Real part of the voltage phasor at bus  
  Imaginary part of the voltage phasor at bus  

  Lifting variable associated with nonlinear terms 

 Eigenvalue of the moment relaxation matrix associated 
with maximal clique   

 
Constants and Sets: 

    The elements of the susceptance matrix 

 Set of buses connected to clique c 
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 Number of buses within clique  
 The elements of the conductance matrix 
 Total number of buses 
  The proximal matrix associated with clique c 

 Real power injection at bus  
       Set of load buses in the network 
       Set of voltage-controlled buses in the network 

 Reactive power injection at bus  
       Reactive power demand at bus  

  Minimum reactive power generation for the generation 
unit connected to bus  

 Maximum reactive power generation for the generation 
unit connected to bus  

         Set of slack/reference bus within the network 
 A flag indicating if buses i and j belongs to clique c  
  The last known measurement for the real part of the 

voltage phasor at bus  
  The last known measurement for the Imaginary part of 

the voltage phasor at bus  
 Real part of the voltage phasor at reference bus 

 Imaginary part of the voltage phasor at reference bus  

 Voltage magnitude at voltage-controlled bus   
 Maximum voltage magnitude at load bus   
 Minimum voltage magnitude at load bus   

 A positive damping parameter 
 A coefficient for convergence of JP-ADMM 

 The vector Lagrangian multiplier at iteration  
 The index for iterations 

 A small tolerance for error  
 A constant for proximal term associated with clique c 

 The feasibility region of lifting variables in clique c 
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I. INTRODUCTION 
OLVING power flow is essential for many power system 
applications including contingency analysis and state 
estimation. The variabilities imposed by the increase in the 

penetration level of renewable energy resources further 
underline the necessity of a reliable framework to solve this 
problem. To solve the power flow problem a solution to a 
nonlinear system of equations should be procured and the 
feasibility of power flow problem is the key to finding such a 
solution [6]-[8]. Solving a system of nonlinear equations is not 
trivial. The nonlinear equations form a set of quadratic 
equations which forms a non-convex feasibility region. To 
solve the full power flow problem, various iterative approaches 
are employed. Gauss-Seidel and Newton-Raphson (NR) are the 
most popular approaches which are employed to solve this 
problem. However, the non-convex nature of the power flow 
problem made it difficult for these set of approaches to ensure 
convergence to a solution. Although the convergence of the NR 
approach is better than similar iterative approaches, it may fail 
to provide a solution under some circumstances. In general, 
several scenarios may happen in solving the system of nonlinear 
power flow equations. The most trivial one is that a unique 
solution exists which can be easily procured with an arbitrary 
initial guess. For the majority of power flow problems, the 
choice of the initial guess plays an important role in procuring 
one solution among a set of existing solutions to the problem. 
However, another scenario is when the iterative approaches fail 
to render a solution because of a bad initial guess, ill-
conditioned power flow or the singularity of the Jacobian 
matrix during the iterative process [5]-[9]. The last scenario is 
when the system has no solution. In scenarios where the 
iterative approach fails to procure a feasible solution, it is hard 
to determine if the system of equations has no solution or the 
failure of these approaches is because of numerical issues or 
inappropriate initiation guess. 

 To improve the robustness of the iterative approaches, a set 
of methodologies is proposed in the literature. A direct 
approach to solve NR is to utilize the lower-upper (LU) 
factorization which has a considerable computation burden that 
impedes the large-scale implementations. Krylov subspace 
introduces a family of methods as presented in [1] to solve the 
power flow with a finite number of iterations which is at most 
equal to the number of buses in the network. The Newton-
generalized minimal residual method is a member of the family 
of the Krylov methods employed to solve the power flow 
problem. Several attempts were made to improve the 
convergence of Krylov methods. To update the preconditioners 
for the linearized equations of the next iteration, an adaptive 
preconditioning scheme is proposed in [2]. Additionally, a 
flexible inner-outer preconditioner for Newton-generalized 
minimal residual method is discussed in [3]. In [4], another 
possible preconditioner for the Krylov method is introduced 
which utilized the incomplete LU factorization. However, 
finding proper preconditioning for Krylov subspace-based 
iterative methods is a challenging task. A continuous Newton’s 
method is enumerated in [5], where the power flow equations 
are presented by a set of ordinary differential equations.  
The motivation of this paper is to provide an efficient solution 
methodology that not only provides a solution to the power flow 
problem but also provides insights for possible corrective 

actions to ensure a feasible solution for an infeasible power 
flow problem.  

 Presenting a convex relaxation for the power flow problem 
is an analytical approach to overcome the short-comings of the 
iterative approaches [10]. Semi-definite programming 
relaxation is used to solve different problems in power systems 
[11]-[14]. This relaxation is usually tighter than a second order 
cone relaxation, while its scalability is questionable [11]. A 
sparse formulation is presented in [12] to enable the application 
of semi-definite relaxation for large-scale problems. To ensure 
the tightness of the relaxation, a hierarchy of moment 
relaxations could be leveraged [13]. Although the convergence 
to a solution which is also feasible for the original non-convex 
problem is guaranteed, the computation burden of this 
relaxation made it impractical for large-scale applications. The 
issue related to scalability of employing higher-orders of the 
moment relaxation for power system applications is discussed 
in [14].  

  In order to address the scalability of solving the power flow 
problem, a distributed power flow approach based on JP-
ADMM algorithm that leverages moment relaxation is 
presented in this paper. In addition to perturbation, employing 
a higher order of moment relaxation tightens the presented 
relaxation. Presenting the distributed framework enables 
scalability of the presented approach. The main contributions of 
this paper are listed as follows: 

- A distributed convex relaxation framework is proposed, 
where the second order of moment relaxation is utilized to 
find a feasible solution. Unlike the iterative approaches, 
utilizing a convex representation of the power flow 
problem would determine the feasibility of the power flow 
problem. 

- To facilitate the scalability, the presented relaxation is 
formulated in sparse form. This will improve the scalability 
due to the small size of each sub-problem given the small 
size of the sparse representation of the convex relaxation 
problem. 

- A perturbation function is introduced to render a tighter 
relaxation that yields a solution among many solutions to 
the power flow problem. The perturbation enables the 
system operators to examine the state of the system in 
proximity of a specific operating point e.g. previous 
operating point. 

- The distributed framework provides an ability to examine 
the infeasibility of power flow problem to determine a set 
of corrective actions. Once a sub-problem renders an 
infeasible solution, the bases of infeasibility within the 
network can be identified. 

- A tightness measure is introduced to examine the merit of 
proposed relaxation to procuring a solution which is 
feasible for the original non-convex problem. 

This paper is organized as follows: Section II presents the 
classic power flow problem formulation. Section III presents a 
solution methodology for the convex relaxation of the problem 
in a distributed framework. Section IV presents the numerical 
results to show the effectiveness of the proposed framework to 
solve the power flow problem, and section V presents the 
conclusions. 

S 
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II. PROBLEM FORMULATION

The power flow problem using the rectangular 
representation of complex nodal voltage is given in (1a)-
(1e). The input parameters for the power problem are 1) real 
and reactive power injections for load buses, 2) the voltage 
magnitude and real power injections of voltage-controlled 
buses, and 3) the voltage phasor of the slack bus as a 
reference. Here, the load and voltage-controlled buses are 
also shown as PQ and PV buses, respectively. The voltage on 
the slack bus is set to a reference value as stated in (1a) and 
the solution to the power flow equations would also 
determine the real and reactive power generation on the 
slack bus. The real power injection for PV and PQ buses is 
given in (1b), where the real power injections are given, and 
the voltage phasors are unknown variables. The reactive 
power injection for PQ buses is given in (1c), where the 
reactive power injections are provided, and the voltage 
phasors are unknown variables. The voltage magnitude for PV 
buses is controlled as given in (1d). The reactive power 
generation of the generators connected to PV buses is limited 
as given in (1e). Once the reactive power limits are reached in 
these buses, the voltage cannot be controlled anymore. Thus, 
the reactive power generation is fixed to the capacity of the 
generation unit connected to the bus and the voltage 
magnitude will be relaxed meaning that the bus is treated as a 
PQ bus.   (1a) 

 (1b) 

  (1c) 

  (1d) 

  (1e) 

The equations with quadratic terms in (1b)-(1c) provide a 
non-convex feasibility region by nature. Thus, it is challenging 
to establish a reliable solution methodology that guarantees the 
procurement of a feasible solution. A distributed optimization 
framework based on a sparse convex relaxation is formulated 
in the next section to address this challenge. 

III. SOLUTION METHODOLOGY

The power flow problem is formulated as an optimization 
problem for which any feasible solution is a solution to the 
power flow problem. To present a distributed convex relaxation 
for the power flow problem, the second order of moment 
relaxation is employed. First, the convex relaxation of the 
power flow problem is formulated in sparse form. Second, a 
perturbation is used to tighten the relaxation. Finally, the JP-
ADMM framework is used to solve the perturbed relaxed sub-

problems and yield a solution to the power flow problem. Once 
the problem is reformulated in the convex relaxed form, not all 
the solutions provided by the relaxed optimization problem are 
feasible for the original non-convex problem. However, the 
feasible solution for the original non-convex power flow 
problem is among many solutions to the relaxed problem. The 
detailed description of the presented solution methodology is 
given as followings. 

A. Convex Relaxation
The non-convex feasibility region of the power flow problem

is due to the nonlinear and quadratic terms that include the 
voltage phasors. The vector of elements of voltage phasors for 
all buses within the network is presented in (2).  

(2) 

In the presented relaxation, the quadratic and nonlinear terms 
appear in the power flow equations are replaced by lifting 
terms. As presented in (3), the nonlinear relationships between 
elements of voltage phasor are dropped and the lifting terms are 
assembled in a semi-definite matrix. For example, , where 

and , is a nonlinear term which is replaced by a 

lifting variable . 

 (3) 

The semidefinite relaxation is the first order of hierarchy in 
the Lasserre hierarchy of moment relaxation. Increasing the 
order of moment relaxation to infinity will guarantee the 
convergence of the presented relaxation to a solution which is 
feasible for the original non-convex problem [13]. In this paper, 
once the solution to the relaxed problem is feasible for the 
original non-convex problem the relaxation is considered as 
tight. Theoretically, the relaxation will be tight once the rank of 
presented semi-definite matrix is one. This means that the 
relaxation matrix has only one non-zero eigenvalue and 
therefore, a unique set of values for the element of the voltage 
phasor vector in (2) can be procured. 

In general, there is no guarantee to ensure that the desired 
tight relaxation is procured by a lower order of moment 
relaxation. In addition, increasing the order of moment 
relaxation to infinity is computationally expensive and would 
make it impractical for the real-world applications. To 
overcome these challenges, the relaxation is reformulated in 
sparse form. A perturbation scheme is introduced to tighten the 
lower orders of the moment relaxation.  

To exploit the sparsity in the power network, maximal 
cliques within the network are defined. Maximal clique by 
definition is the largest subgraph in which all its nodes are 
adjacent to each other. It is sufficient to consider the lifting 
terms within each maximal clique for the power flow problem 
since all other nonlinear terms are not utilized in the power flow 
equations. Thus, several small moment relaxation matrices 
corresponding to maximal cliques are formed. Although, 
semidefinite programming provides a solution in polynomial 
time, the computation complexity of solving the problem is

, where n is the size of each row in the semidefinite 
matrix. Without using sparsity, n is equal to twice of the number 
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of network buses which makes the problem very expensive to 
solve. However, by forming maximal cliques and using the 
sparsity of the network, n is equal to twice as the number of 
buses with the clique which is a relatively small. The sparse 
form is computationally efficient when higher orders of the 
hierarchy are employed. If all sparse moment relaxation 
matrices are tight and render a rank-1 solution, the procured 
relaxation successfully returns a feasible solution to the original 
non-convex problem. 

To enforce the tightness of the moment relaxation, a 
perturbation scheme is employed [15]. Perturbation scheme 
introduces an objective for the relaxed problem which is 
employed to find the feasible solution for the power flow 
problem. The choice of the perturbation function will depend 
on the preferred operating point of the system. Power flow 
problem may have multiple solutions and the choice for the 
perturbation function may change the procured feasible 
solution. As the set of voltages in the network is close to those 
in the previously known state of the network, here, the 
perturbation function is defined as to find the solution which is 
the closest to the last known feasible system condition. 

Lifting variables are employed to reformulate the power flow 
problem in the relaxed form as given in (4). The perturbation 
function is given in (4a) as the objective of the moment 
relaxation problem. The real and imaginary parts of the voltage 
at the slack bus are known as given in (4b). It is assumed that 
the generation unit connected to the slack bus can provide the 
required real and reactive power in the network. Reformulating 
(1b) using the lifting variables, the real power injection balance 
for PV and PQ buses is given in (4c). The reactive power 
injection balance for PQ buses is given in (4d). The real and 
imaginary parts of the voltage on PQ buses are determined by 
solving the presented optimization problem considering the 
acceptable voltage limits. Thus, the magnitude of the voltage on 
PQ buses is also enforced to remain within an acceptable range 
as shown in (4e). The magnitude of the voltage on PV buses is 
fixed as shown in (4f). The reactive power generation of PV 
buses is limited by the physical limits of the generation unit 
connected to PV bus, as shown in (4g). When the procured 
solution enforces the reactive power generation to be equal to 
its limits for PV buses, the PV bus is transformed to a PQ bus 
with fixed reactive generation. The lifting variables used in the 
presented relaxed formulation (4a)-(4g), formed a linear matrix 
inequality (LMI) shown in (4h).  

      (4a) 

S.t.:  (4b) 

    (4c) 

         (4d) 

       (4e) 

       (4f) 

 (4g) 

(4h) 

The presented convex relaxation formulation will render a 
feasible solution once such a solution exists. However, the 
sparse representation provides a possibility to employ a 
distributed framework to solve the relaxed problem. JP-ADMM 
algorithm is employed in the next subsection to solve the 
distributed form of this problem. 

B. Distributed power flow framework 
In any distributed optimization framework, there is a trade-

off between the computation burden of solving each sub-
problem and the process burden associated with the number of 
equality constraints that represent consensus among the 
solutions to the sub-problems. Here, each sub-problem is 
associated with a maximal clique. The computation burden of 
solving a clique is low as the number of rows of the associated 
moment relaxation matrices is small. In JP-ADMM algorithm, 
first, an initial solution (e.g. the previously measured nodal 
voltages) is assumed. The main advantage of the JP-ADMM 
approach is the possibility of solving sub-problems in parallel. 
Thus, the lifting variables within maximal cliques are updated 
in parallel until a consensus among those lifting variables that 
are shared among maximal cliques is reached. For the sake of 
simplicity, lifting variables are represented as , 
where is half-vectorization operator vectorizing the 
lower triangular part of a symmetric matrix. The convergence 
of the JP-ADMM approach employed in this paper is discussed 
in [16]. The algorithm is presented as follows:  

Step 0) Initialize which represents the lifting variables in 

each clique and which represents the vector of Lagrangian 
multipliers associated with each equality constraint. Set 
iteration index to . 

Step 1) Update for each clique simultaneously using (5). 
The first term in (5) is the perturbation function with the lifting 
terms associated with maximal clique c. The second term is the 
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Euclidean distance of the mismatch in the equality constraints 
of the convex relaxation problem. Here, the distance of the 
decision variables within a clique with those procured in the 
previous iteration is minimized. The pre-defined constant r sets 
the weight of this term in the objective, and is the procured 
Lagrangian multiplier in previous iteration. The third term is the 
proximal term to facilitate the convergence. Here is a 
symmetric and positive semidefinite matrix, where

. The choice of facilitates the convergence 

of this algorithm. Here, the standard proximal method is 
leveraged where and  as a positive parameter. The 
feasibility region for the lifting variables within a clique is 
presented by .  

(5) 

As several buses are shared between the cliques, the average 
value of the shared variables determined by each sub-problem 
is considered. The essence of considering the average value of 
the variables to reach a consensus among the parallel solutions 
is presented in [17].  

Step 2) Check if the consensus is reached by considering the 
mismatch in the proximal term in (6). If the mismatch is within 
a predefined tolerance for all cliques, the algorithm is 
converged and terminated here. Otherwise, proceed to Step 3.   

       (6) 

Step 3) Update the Lagrangian multiplier using (7), where  
is a positive damping parameter. Then, update  and 
proceed to step 1. 

      (7) 

A detailed description of optimization problem presented in (5) 
is shown here. The perturbation matrix associated with each 
clique is presented in (8), where the set of buses that belong to 
clique c is presented by .  

(8) 

The equality constraints (4c)-(4d) may include lifting 
variables from various cliques. These equality constraints are 
relaxed and embedded in the second term in (5) as expanded in 
(9). Here, is a flag set to 1 if buses i and j belong to clique c 
and zero otherwise. The expanded form of (9) includes 
quadratic terms of lifting variables which forms a nonlinear and 
non-convex problem. Thus, the second order of moment 

relaxation is employed that use a new set of lifting variables 
associated with the quadratic terms in (9). 

(9) 

The expanded forms of the terms in (9), using the lifting 
variables are given in (10) and (11). The lifting terms used in 
(10)-(11) belong to the second order of moment relaxation 
problem formulated for a clique. The same lifting terms appear 
in the expanded form of the third term in (5). 

      (10) 

     (11) 

The monomials associated with the second order moment 
relaxation is defined as .The rth-order moment 
relaxation for a clique using the lifting term operator is shown 
in (12). The first order moment relaxation is already defined in 
(4h). Adopting the notation presented in [13], the monomial 
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associated with the first order moment relaxation is defined by
, i.e. . 

       (12) 

The feasible region of the sub-problem associated with a clique 
that represented by in (5) is formed by (13). The second 

order moment relaxation formulated for each clique is 
presented as an LMI (13a). All lifting terms used in (10)-(11) 
are included in (13a). The inequality constraints (4e)-(4f) can 
be captured for each clique as the lifting variables exist in them 
are embedded in the associated moment relaxation matrix. As 
the second order of moment relaxation is employed here, (13b)-
(13e) are the localizing constraints of (4e)-(4f) by adopting the 
notation in [13]. The last inequality constraint that forms the 
feasibility region of (5) is the inequality constraint representing 
the reactive generation limits of the generation units connected 
to PV buses. The localizing representation of (4g) is provided 
in (13f)-(13g), where utilized the procured values of the 
neighboring cliques in the previous iteration.   

          (13a) 

 (13b) 

(13c) 

(13d) 

      (13e) 

 

(13f) 

 

(13g) 

Each of the moment relaxation matrices presented in (13b)-
(13g) are the localizing matrices associated with the constraints 
that form the feasible region of (5). For the sake of clarity, the 
localizing constraint (13b) is expanded in (14). Here, it is 
assumed that the buses i and j are the only two members of a 
clique. All lifting variables used in (14) are defined in (13a).   

C. Discussion on the feasibility of the relaxed power problem 
  The presented distributed framework using JP-ADMM will 
converge to a solution for the relaxed problem. The solution 
procured will be feasible for the original power flow problem 
when the rank of all first-order moment relaxation matrices 
associated with the maximal cliques is 1. However, reaching an 
exact rank 1 is impractical as the LMIs utilized in the presented 
distributed framework are solved by interior-point algorithms. 
Thus, a tightness measure is used here to determine the quality 
of the solution. The tightness of the procured solution for each 
clique is presented as the ratio of the largest eigenvalue of the 
associated first-order moment relaxation matrix to the second 
largest eigenvalue of that matrix as shown in (15). Here, is 
the tightness measure for each maximal clique . Larger ratio 
means the rank of the associated moment relaxation matrix is 
closer to 1. 

          (15) 

Using the Cholesky decomposition, the elements of the 
voltage phasor for each clique can be procured using (16). If the 
second largest eigenvalue is much smaller than the largest 
eigenvalue, a unique set of voltages can be procured. Here, the 
vector of voltages is a span of multiplying non-dominated 
eigenvalues to their associated eigenvectors. 
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IV. NUMERICAL RESULTS 
To show the merit of the proposed approach, several test case 

studies are analyzed. The data for these cases can be found in 
[9], [18], [19]. To show the effectiveness of the proposed 
approach in procuring a solution for the ill-conditioned power 
flow problems, Case43-ill and Cas13-ill presented in [9] are 
studied. To justify the scalability of the presented algorithm 
with the increase in the size of the power network, the sparse 
structures of these cases are analyzed. The total number of 
cliques, the average size of cliques, the average size of each 
clique, the maximum size of cliques, and the number of shared 
variables are presented in Table I.  

TABLE I 
THE SPARSE STRUCTURE OF VARIOUS TEST CASES 

Test case 

Total 
number 

of 
cliques 

The 
average 
size of a 
clique 

The 
max. 

size of 
a clique 

Total 
number 

of shared 
variables 

Solution 
Time [s] 

4gs 4 2 2 8 0.58 
Case9 9 2 2 18 0.65 

Case14 12 2.41 3 20 0.63 
IEEE 30 29 2.2 3 44 0.82 
Case 33 32 2 2 56 0.88 
Case57 62 2.14 3 106 1.28 

IEEE 118 141 2.14 4 198 2.12 
Case 200 223 2.05 3 252 4.07 
Case2383 2836 2.01 3 3732 35.11 
Case13-ill  6 2.33 3 10 0.67 
Case43-ill  42 2 2 44 0.77 

The average size of formed cliques is small for all cases. The 
number of shared variables has direct correlation with the 
number of cliques. In addition, with the increase in the number 
of buses, the solution time is not dramatically increased. The 
correlation between the sizes of various case studies with the 
solution time to solve the problem is shown in Table I. As it is 
shown, with the exponential increase in the size of the network, 
the solution time does not increase proportionally and therefore, 
the presented solution methodology could be used for real-
world power flow problems. 

To show the exactness of the solution procured by the 
presented algorithm the introduced tightness ratio is quantified. 
The average, standard deviation, smallest and largest values for 
the tightness measures for the cliques in various test cases are 
provided in Table II. The tightness measure in all case studies 
reached to a level that the procured solution could be considered 
as feasible for the original non-convex power flow problem. 
The standard deviation of the tightness measures shed lights on 
the overall range of tightness ratios for various cliques in the 
test case studies. For example, a very small standard deviation 
in Cases4gs, Case9, Case13-ill and Case 14 illustrates that the 
tightness ratios of all cliques are in a close neighborhood of 
their average values. The minimum and maximum tightness 
ratios reveal the best- and worst-quality solutions. A very low 
tightness ratio indicates that there are some cliques within the 
network that may not yield a tight enough solution. The 
closeness of the minimum tightness ratio to the average 
tightness ratio with a small standard deviation reveals that the 

tightness measure for all cliques is almost equal to the average 
tightness measure (e.g. Case 33). If the maximum tightness 
ratio is significantly larger than the average value with small 
standard deviation, there are few cliques that are exceptionally 
tighter than the average tightness ratio. An example of this 
situation is in IEEE-118 bus system. If the minimum tightness 
ratio is significantly smaller than the average with small 
standard deviation, there are few cliques that have exceptionally 
looser relaxation gap than the average tightness ratio (e.g. Case 
200 and Case 2383). The relaxation might be tightened by some 
perturbation in a clique with exceptionally small tightness ratio.    

TABLE II 
THE ANALYSIS OF TIGHTNESS FOR VARIOUS TEST CASES 

Test case Average 
TRc 

Standard 
deviation of TRc 

Minimum 
TRc 

Maximum 
TRc 

Case 4gs 8.39 0.07 8.28 8.47 
Case9 8.62 0.11 8.48 8.76 

Case14 7.92 0.40 7.26 8.53 
IEEE 30 7.14 1.31 3.89 8.35 
Case 33 7.46 0.05 7.35 7.59 
Case57 6.11 1.69 2.05 7.72 

IEEE 118 7.79 1.16 2.97 8.87 
Case 200 6.25 1.03 2.19 7.07 

Case 2383 5.51 0.50 2.45 6.14 
Case13-ill 7.59 0.52 6.86 8.44 
Case43-ill  5.45 0.43 4.12 5.81 

The ultimate solution to the power flow problem is the 
voltage profile. The voltage profile of the procured power flow 
should be within an acceptable range to represent a physically 
meaningful solution. The average, standard deviation, 
minimum as well as the maximum values for the voltage 
magnitudes and angles of the buses for each test case are given 
in Tables III and IV, respectively. As shown in Table III, all 
voltages are close to 1 p.u. with a relatively small standard 
deviation as expected. The minimum and maximum voltage 
magnitudes are also within the desired limits. The voltage 
angles are also very small which indicates procuring of a set of 
valid solutions for various test cases as it is desired to keep the 
difference in voltage angles a small number for the stability of 
the system. 

TABLE III 
THE VOLTAGE MAGNITUDE FOR VARIOUS TEST CASES 

Test case 

Average 
voltage 

magnitude 
[p.u] 

Standard 
deviation of 

voltage 
magnitude 

[p.u.] 

Minimum 
voltage 

magnitude 
[p.u.]  

Maximum 
voltage 

magnitude 
[p.u.] 

Case4gs 1.0005 0.0205 0.9763 1.0207 
Case9 0.9895 0.0068 0.9810 1.0032 

Case14 1.0415 0.0161 1.0110 1.0600 
IEEE 30-bus 1.0004 0.0148 0.9780 1.0388 

Case 33 0.9485 0.0303 0.9131 1.0000 
Case57 1.0251 0.0272 0.9669 1.0600 

IEEE 118 0.9821 0.0205 0.9401 1.0489 
Case 200 1.0287 0.0249 0.98 1.100 
Case2383 1.00093 0.0264 0.9210 1.1100 
Case13-ill  1.0234 0.0325 0.9628 1.0589 
Case 43-ill 1.0153 0.0352 0.9457 1.1000 
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TABLE IV 
THE VOLTAGE ANGLE FOR VARIOUS TEST CASES 

Test case 

Average 
voltage 

magnitude 
[deg.] 

Standard 
deviation of 

voltage 
magnitude 

[deg.2] 

Minimum 
voltage 

magnitude 
[deg.]  

Maximum 
voltage 

magnitude 
[deg.] 

Case 4gs 1.2406 0.7636 0.2815 1.9443 
Case9 1.3872 1.5629 0.0145 3.8385 

Case14 12.4093 4.2081 0.1512 18.8267 
IEEE 30-bus 1.8474 1.1174 0.0589 4.7442 

Case 33 0.2159 0.1555 0.0157 0.4978 
Case57 89.1508 4.0331 76.6198 96.1728 

IEEE 118 22.2289 7.7311 8.3984 40.6531 
Case 200 18.5639 6.2415 0.4563 31.0847 
Case2383 10.7944 7.5793 0.3995 27.3941 
Case 13-ill  4.7984 2.3888 1.7359 10.2060 
Case 43-ill 5.8980 3.5884 0.8998 18.6341 

The procured voltage profiles using the proposed approach and 
NR method are shown in Fig. 1-7 for several cases. Here, the 
constraint (4b) is relaxed in Fig. 1-4 to enable distinguishing 
between the solutions procured using the proposed approach 
and the NR method. The voltage profile in Fig. 5 demonstrates 
the same voltages procured using both approaches as (4b) is 
enforced. It is worth noting that the NR approach is not capable 
of rendering a solution for the ill-conditioned cases of 13-bus 
and 43-bus systems. Thus, the voltage profile that is given in 
Fig. 6 and Fig. 7 only includes the solution rendered by the 
proposed approach. 
 

 
Fig. 1. The procured voltage profiles using the proposed approach and 
NR method for Case4gs  

 
Fig. 2. The procured voltage profiles using the proposed approach and 
NR method for Case 9 

 
Fig. 3. The procured voltage profiles using the proposed approach 
and NR method for Case 14 

 
Fig. 4. The procured voltage profiles using the proposed approach 
and NR method for IEEE 30-bus system  

 
Fig. 5. The procured voltage profiles using the proposed approach 
and NR method for case33 

 
Fig. 6. The procured voltage profiles using the proposed approach 
and NR method for case13-ill 

 
Fig. 7. The procured voltage profiles using the proposed approach 
and NR method for Case43-ill 

Obtaining the loss of the system is another objective for solving 
the power flow problem. The values of system loss for the 
presented cases are given in Table V. When constraint (4b) is 
relaxed, the values of network loss procured using the proposed 
approach for Case4gs, Case9, and Case14 are smaller than those 
provided by the NR method . The network loss for Case33 is 
the same for the proposed method and NR when constraint (4b) 
is enforced. Thus, the proposed approach is capable of 
providing a solution with less network loss compared to NR 
method. 

TABLE V 
THE COMPARISON OF THE PERCENT OF LOSSES FOR VARIOUS TEST CASES 

Method Case4g
s Case9 Case14 Case33 Case13-ill Case43-ill 

NR 0.99 1.58 5.17 5.45 NA NA 
Proposed 
approach 0.99 0.70 0.96 5.45 0.94 1.21 
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V. CONCLUSION 
This paper presented a convex relaxation framework that 

provides a feasible solution for the power flow problem in 
polynomial time. The Jacobi-Proximal alternative direction 
method of multipliers algorithm is employed to ensure 
convergence among several sub-problems. In each sub-
problem, the second-order moment relaxation is employed to 
reformulate the power flow problem in relaxed form. This 
relaxation which provides a tighter relaxation compared to the 
first-order moment relaxation is further tightened by 
introducing a perturbation function. This function seeks the 
closest solution to a specific solution to the power flow 
problem. An example of such a solution is the last known power 
flow solution of the network. While employing higher orders of 
moment relaxation provides a tighter relaxation with huge 
computation burden, leveraging lower order of moment 
relaxation will not notably increase the computation burden.  
Using perturbation provides a solution for the presented relaxed 
problem which is also feasible for the original non-convex 
power flow problem. The effectiveness of the presented 
approach for several test cases is presented. The scalability of 
the presented algorithm is illustrated, where for a network with 
thousands of buses, the presented relaxation is tight and render 
the solution to the original non-convex power flow problem. 
The potential future work is to utilize the proposed solution 
method as a fundamental analysis tool for various power system 
problems. For example, the presented framework can be 
utilized in state estimation and contingency analysis problems. 
Another potential future direction for the presented study is to 
focus on accelerating the algorithm to decreasing the solution 
time. 
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