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Natural Gas Short-Term Operation Problem with
Dynamics: A Rank Minimization Approach
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Abstract—Natural gas-fired generation units can hedge against
the volatility in the uncertain renewable generation, which
may occur during very short periods. It is crucial to utilize
models capable of correctly capturing the natural gas network
dynamics induced by the volatile demand of gas-fired units. The
Weymouth equation is commonly implemented in literature to
avoid dealing with the mathematical complications of solving
the original governing differential equations of the natural gas
dynamics. However, it is shown in this paper that this approach
is not reliable in the short-term operation problem. Here, the
merit of the non-convex transient model is compared with the
simplified Weymouth equation, and the drawbacks of employing
the Weymouth equation are illustrated. The results demonstrate
how changes in the natural gas demand are met by adjustment
in the pressure within pipelines rather than the output of natural
gas suppliers. This work presents a convex relaxation scheme for
the original non-linear and non-convex natural gas flow equations
with dynamics, utilizing a rank minimization approach to ensure
the tightness. The proposed method renders a computationally
efficient framework that can accurately solve the non-convex
non-linear gas operation problem and accurately capture its
dynamics. Also, the results suggest that the proposed model
improves the solution optimality and solution time compared to
the original non-linear non-convex model. Finally, the scalability
of the proposed approach is verified in the case study.

Index Terms—natural gas dynamics, convex relaxation, rank
minimization, uncertainty, short-term operation.

NOMENCLATUREVariables
du,t Served gas demand of gas-fired unit
mt
p,s Mass flow rate through segments of pipes

pr(.) Pressure at junctions or segments of pipe (Pa)
P (.) Real power dispatch
vGg,t Gas supply of supplier g at time t (kcf)
γtp,s Lifting variable associated with pipe segments
θb,h Voltage angle of bus b at hour h
η(.)

(.) , ζ
(.)
(.) , λ

(.)
(.) Dual variables for equality constraints

µ(.)
(.), µ

(.)
(.) Dual variables for inequality constraints

Sets
b ∈ B Set of buses in power network
br ∈ BR Set of branches in power network
c ∈ C Set of junctions with gas compressors
g ∈ G Set of gas suppliers
h ∈ H Set of hours
i ∈ I Set of units in power network
p ∈ P Set of pipes in gas network
s ∈ Sp Set of all segments of pipe p
t ∈ T Set of time intervals
u ∈ U Set of gas-fired units in the power network
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Parameters
c Speed of sound (m/s)
D Diameter of natural gas pipe (m)
dGl,t Demand of natural gas load l at time t
f Friction factor of natural gas pipes
FCi , F

G
u Cost function/ Gas consumption function of unit i

prJ
j
, prJj Lower/upper bounds for pressure at junction j

P
D

b,h Real power demand of bus b at hour h
vGg , v

G
g Lower/upper bounds for natural gas supplier g

xbr Reactance of branch br
Γ Ratio of compressors in natural gas network
∆x Length of natural gas pipe segments
∆t Time step duration
κE , κG Value of lost load in electricity/gas networks
ξg Cost multiplier of natural gas supplier g ($/kcf)

I. INTRODUCTION

CURRENTLY, natural gas-fired generation accounts for
the largest portion of the electricity generation among

all types of electricity production in the United States [1]. It
is estimated that the share of natural gas-fired units will remain
at 37% among all types of electricity generation in the US for
the next three decades. Due to their fast-responsive nature,
natural gas-fired generation units are mostly utilized during
peak hours. In addition to meeting demand fluctuations, they
also provide support when renewable generation falls short of
the predicted values. The rotatory outage that occurred during
the 2021 winter storm of Texas is an example of a renewable
scarcity event. Besides, in a highly renewable integrated
network such as California’s, the dispatch of natural gas-fired
units is doubled or tripled in the span of a few hours several
days a year. According to the data provided by California
Independent System Operator (CAISO), it is observed from
Fig. 1 that natural gas-based generations experience evening
surges every day [2]. These patterns are mostly caused by the
simultaneous drop in total solar and wind generation supply
and the diurnal growth in electricity consumption. It is noticed
from Fig. 1 that the amount of variations in daily renewable
power generation is in the order of GW per hour. Currently,
natural gas-fired units are deemed the practical option to hedge
against uncertainties of this magnitude due to their extensive
penetration.

The operation problem of joint electricity and natural gas
networks has been a subject of many researchers [3]–[11].
Among the applications studied in this area, we can mention
demand response [3], renewable generation integration [4],
expansion planning [5], [6], and market operations [7].
Natural gas linepack modeling and its effects are also
covered in several research works [5], [8], [9]. The extent
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Fig. 1. Gas based and renewable electricity generation 22-28 June 2020

of coordination between electricity and natural gas networks
is an important aspect. In some cases, natural gas network
equations are merely considered as constraints (i.e., fuel
security-constrained) for the optimization problem of the
electricity network [9]. On the contrary, sometimes it is the
case that the operation of these networks is fully coordinated,
and each network is aware of the other network’s state [10],
[11]. In any case, regardless of the application or the degree of
coordination, utilizing a model capable of correctly capturing
and representing the natural gas network dynamics is critical.

Natural gas demand is highly varying and depends on
various elements including the changes in the electricity
demand and non-dispatchable renewable generation. Since
natural gas variations influence electricity operations, precise
modeling of gas transients is essential to the coupled operation
of electricity and natural gas infrastructures. The choice
of natural gas model is often a trade-off between solution
time and accuracy. Naturally, models with more accurate
representations of natural gas dynamics come at the price of
higher complexities and subsequent computational challenges.
In some studies, researchers might not even consider any gas
flow model [12]–[14]. These works usually deal with midterm
and long-term planning horizons, and understandably, neglect
gas flow modeling. However, in short-term planning horizons,
the impact of variations distinctly stands out and natural gas
flow dynamics cannot be disregarded. In short-term problems,
the choice of the OGF model becomes exceedingly important
since the available time window for running the model is
limited. From the natural gas dynamics point of view, the
existing research work coping with the coordinated scheduling
of electricity and natural gas networks is best categorized as
steady-state and transient models.

A. Literature Review on Steady-State Models

To avoid the computational burden of dealing with the
differential equations of the Optimal Gas Flow (OGF)
problem, simplified steady-state models are often used in
the literature. The general flow equation, which considers
variations in the length of the pipe and its diameter along
with certain assumptions, can be approximated to the widely
applied Weymouth equation [4], [7], [8], [15], [16]. However,
as will be shown later in this paper, the Weymouth equation
is unsuitable for short-term operation problems. In some
research works, the authors have approximated the Weymouth
model with linearization techniques [3], [9], [17]. Another
approach is opting for convex relaxation of the Weymouth

formulation [5], [6], [11], [18], [19], with Second-Order
Cone Programming (SOCP) [20]–[22] and Semi-definite
Programming (SDP) [23] being among the utilized methods.

Steady-state approximations lead to inaccurate results in
short-term operation problems which are subject to highly
varying natural gas consumption rates. These approaches
neglect dynamic relations between natural gas pressure and
mass flow rate, caused by gas compressibility and low velocity,
both inside pipelines and across different time steps. That is
why for short-term planning periods, it is better to avoid using
steady-state models and instead implement transient models
which accurately capture the intra-hour dynamics of natural
gas through the spatio-temporal representation of the system.
Besides, steady-state models assume that the supply-demand
balance in a natural gas network is established momentarily. In
reality, it could take several hours for natural gas to travel from
the source to the demand junction, depending on the distance.
Throughout this article, the phrase “short-term operation” is
best categorized as operation planning problems in the span
of a few hours up to a day.

B. Literature Review on Transient Models

Transient models obtain the OGF problem by considering
the governing Partial Differential Equations (PDEs) of the
natural gas network [10], [24], [25]. Finite difference methods
are implemented to transform these PDEs into time-difference
equations so that the governing PDEs of the OGF problem
can be numerically solved [26]. However, finding the optimal
solution to this non-linear, non-convex, and spatio-temporally
discretized optimization problems is still challenging in
terms of calculation time. In situations with shorter planning
periods, the extended solution time required for solving these
models may not render them practical for such applications.
Additionally, often these models entail utilizing non-linear
solvers, which do not guarantee convergence to the optimal
solution. Linearization approaches are frequently adopted to
negate the inherent non-linearity of these equations and reduce
solver time [27]–[30]. Although linearization techniques are
a way out of the extremely high computation burden caused
by transient OGF models, they still rely on consequential
approximations. Besides, they are not mathematically capable
of representing the exact dynamics of natural gas. Additionally,
linearization methods are problem-specific and cannot be
generalized into all tasks since they are applied around
setpoints.

Fig. 2 illustrates the current state of the literature dealing
with the OGF problem. This work leverages the discretized
transient flow problem formulation, which is solved via
the proposed tight relaxation scheme. According to the
literature, no work has dealt with convex relaxation of
the non-linear transient OGF problem. The present article
aims to fill this gap by proposing a convex relaxation
method by introducing a rank minimization technique using
a bi-level optimization formulation. Avoiding approximate
methods enables us to enjoy the exactness and accuracy
offered by the transient flow models. Inaccuracies in the
procured solution to the OGF problem could evolve into
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Fig. 2. Graphical representation of the modeling approaches in the literature

potentially costly underestimation or overestimation of the
natural gas network and its interactions with gas-fired units.

Moreover, the major issue with non-linear transient models
is their inevitable time-consuming computations, which
grow exponentially with the size of the problem. The
proposed relaxation method drastically reduces the solver
time compared with the non-linear and non-convex models.
Finally, utilizing non-linear solvers does not guarantee the
optimal solution, whereas convex relaxation allows reaching
an optimal solution within definite relaxation gaps. Although
steady-state models are solved quickly, they utilize simplifying
assumptions that are appropriate only for long-term planning
horizons. Since transient models utilize fewer approximations
and consider smaller time intervals, they are suitable for
short-term operation periods. However, the major downside
of utilizing high-granularity transient OGF models is their
extensive computation burden. This work aims to solve this
issue by proposing a tight convex relaxation for the transient
OGF model. Objectively, any entity dealing with the
operation of natural gas-fired generation units can benefit from
the proposed model. These entities include ISOs, regional
transmission organizations, generation companies, and gas
companies.

C. Contributions

The contributions of this work are listed as follows:

1) The limitations of the Weymouth equation, which
presents an approximation of natural gas behavior, in tackling
high fluctuations in renewable generation in interdependent
electricity and natural gas networks are illustrated. We
demonstrate how leveraging the transient model ensures
no errors will arise in modeling natural gas behavior in
response to sudden changes in demand. At the same time,
the Weymouth equation fails to present a reliable model for
fuel availability.

2) The presented convex relaxation scheme for the
non-linear non-convex transient OGF problem is tight, i.e,
the solution rendered by the relaxed problem is feasible
for the original non-convex problem. A bi-level problem
is formed to implement the proposed rank minimization
technique. The presented form is superior to the standard rank
minimization procedure where the objective of the relaxed
OGF problem is penalized with a perturbation term. This
approach distinguishes between rank minimization in the
upper-level and cost minimization in the lower-level objective
functions. As a result, a near-rank-1 solution is obtained, which
is also optimal at the same time.

3) A computationally advantageous scheme for solving
the OGF problem is obtained as a result of employing the
proposed convexification and rank minimization framework.
A low solution time makes it a perfect tool for short-term
operation problems. This fact is illustrated by comparing the
solution time of the proposed model with that of the original
non-convex model. Utilizing the proposed convex model
renders a physically meaningful optimal solution with better
objective value and a solution time in orders of magnitude
faster than the original non-linear and non-convex model.

4) Several key findings are illustrated, including the fact
that the fluctuations in the natural gas pipelines will address
the changes in the natural gas demand rather than the changes
in the dispatch of resources. This modeling perspective is
crucial for the short-term operation and the preparedness of the
natural gas network to meet the volatile natural gas demand
of gas-fired units.

II. PROBLEM FORMULATION

In this paper, renewable integrated electricity grids which
contain gas-fired generators are considered. The power
network is coupled with a natural gas network, so the
production level of the electricity grid is dependent on the
natural gas provision. While the operation problem presented
here focuses on the look-ahead periods in the order of few
hours, the given problem can also be generalized for the
day-ahead operation problem.

1) Electricity Network Look-Ahead Operation Problem:
The look-ahead operation problem for the electricity network
is a short-term operation problem as shown in (1).

min
P

∑
h∈H

∑
i∈I

FCi (PGeni,h ) + κE
∑
h∈H

∑
b∈B

(P
D

b,h − PDb,h) (1a)

subject to:

PBrbr,h · xbr = θbfr
br ,t
− θbtobr,t, ∀ br ∈ BR, h ∈ H (1b)

PGeni ≤ PGeni,h ≤ PGeni , ∀i ∈ I, h ∈ H (1c)

|PBrbr,h| ≤ P
Br

br , ∀ br ∈ BR, h ∈ H (1d)

0 ≤ PDb,h ≤ P
D

b,h, ∀b ∈ B, h ∈ H (1e)∑
i∈Ib

PGeni,h +
∑

v∈PVb

PPVv,h +
∑

w∈WT b

PWT
w,h = PDb,h

+
∑

br∈BRfr
b

PBrbr,h −
∑

br∈BRto
b

PBrbr,h, ∀b ∈ B, h ∈ H
(1f)

The objective given in (1a) aims to minimize generation
costs while serving as much demand as possible. The first term
in the objective minimizes the total generation cost based on a
quadratic function. The second term in the objective represents
the penalty for not serving the requested demand. As shown
in (1b), the power flow through each branch is a function of
the voltage angles of the two ending buses of that branch.
Equations (1c), (1d), and (1e) set bounds for the generation
of units, flowing power through lines, and the served demand,
respectively. Finally, the nodal balance equation is given in
(1f).
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2) Natural Gas Network Look-Ahead Operation
Problem: Under the isothermal condition assumption,
the one-dimensional gas pipe dynamics through horizontal
pipelines are presented as PDEs in (2).

∂

∂t
p(x, t) +

4c2

πD2

∂

∂x
m(x, t) = 0 (2a)

∂

∂x
p(x, t) +

4

πD2

∂

∂t
m(x, t) +

∂

∂x
ρ(x, t)u2(x, t) =

− 8fc2

π2D5

m2(x, t)

p(x, t)

(2b)

In (2), the spatial (indexed by x) and temporal (indexed
by t) characteristics of the gas pressure (p), the mass flow
rate of the gas (m), gas density (ρ), and gas flow velocity
(u) inside the pipeline are related to each other by partial
derivations over time and space. By assuming time-invariant
gas injections, the dynamics inside gas pipes disappear, and the
Weymouth equation is reached. As seen in (3), the Weymouth
equation models the average volume flow within a pipe (Qmn)
as a function of the pressures at the ending junctions of that
pipe (pm, pn). Here, kmn is a constant based on the pipe
characteristics.

Q2
mn = kmn(p2m − p2n) (3)

However, the Weymouth equation may not reliably model
gas dynamics. Thus, this work is based on the transient model
to ensure that fluid dynamics are primarily considered. By
neglecting the term ∂

∂xρ(x, t)u2(x, t) in (2) and implementing
the finite difference method [26], the equations for a natural
gas network are presented as part of the non-convex OGF
problem (4).

min
vG,d

∑
t∈T

∑
g∈G

ξtgv
G
g,t + κG

∑
t∈T

∑
u∈U

(FGu (PUu,t)− du,t) (4a)

subject to:

prJ
j
≤ prJj,t ≤ prJj , ∀j ∈ J , t ∈ T : µP

j,t
, µPj,t (4b)

vGg ≤ vGg,t ≤ vGg , ∀g ∈ G, t ∈ T : µG
g,t
, µGg,t (4c)

prJj,t = prtp,1, ∀j ∈ J \ C, p ∈ Pfrj , t ∈ T : λfrp,t (4d)

prJj,t = prtp,nseg
p
, ∀j ∈ J , p ∈ Ptoj , t ∈ T : λtop,t (4e)

prJj,t ≤ prtp,1 ≤ Γ.prJj,t,∀j ∈ C, p ∈ P
fr
j , t ∈ T : µc

p,t
, µcp,t

(4f)

0 ≤ du,t ≤ FGu (PUu,t), ∀u ∈ U , t ∈ T : µU
u,t
, µUu,t (4g)∑

g∈Gj

vG(g,t) +
∑
p∈Pto

j

mt
p,nseg

p
−
∑
p∈Pfr

j

mt
p,1 =

∑
l∈Lj

dGl,t,

+
∑
u∈Uj

du,t, ∀j ∈ J , t ∈ T : λLj,t

(4h)

prt+1
p,s+1 − prtp,s+1

2∆t
+
prt+1
p,s − prtp,s

2∆t
+
mt+1
p,s+1 −mt+1

p,s

(πD2/4c2)∆x

= 0, ∀p ∈ P, s ∈ Sp, t ∈ T : ηtp,s

(4i)

prt+1
p,s+1 − prt+1

p,s

∆x
+
mt+1
p,s+1 −mt

p,s+1

(πD2/2)∆t
+
mt+1
p,s −mt

p,s

(πD2/2)∆t

+
mt
p,s

2

(π2D5/8fc2)prtp,s
= 0, ∀p ∈ P, s ∈ Sp, t ∈ T

(4j)

According to (4a), the objective function is to minimize
the total cost of natural gas suppliers, which is composed
of two elements. The first term is the production cost of
natural gas, which is obtained with a linear cost function. The
second term in (4a) penalizes the amount of natural gas fuel
required by a unit to deliver its scheduled generation but is
not served. The upper-bound and lower-bound for the output
of natural gas suppliers and the pressure at each junction, at
each time t, are set in (4b) and (4c), respectively. The pressures
at the first and last segments of each pipe are considered
to be equal to the pressure at the junction adjacent to that
segment, as shown in (4d) and (4e), respectively. Based on
parameter ∆x and the pipe’s length, every pipe in the natural
gas network is sectionalized into several segments indexed by
s. The compressor model is presented in (4f). This equation
ensures that the pressure can be increased up to Γ times
in the compressor junctions, which is a parameter greater
than 1. It is assumed that the natural gas demand of the
gas-fired generators can be shed, according to (4g). Natural gas
supply-demand balance for each junction is ensured in (4h).
The natural gas dynamics are captured in (4i) and (4j). The
last term in (4j) includes a non-linear quadratic fraction that
makes the problem presented in (4) non-linear and non-convex.
Throughout this paper, the term ‘non-linear model/problem’
refers to the original non-linear non-convex OGF problem
presented above.

III. SOLUTION METHODOLOGY

In this section, the procedure by which we solve the
non-convex OGF problem is described step by step in detail.
First, the relaxation scheme to obtain a convex problem
is discussed. Later, it is shown how we ensure obtaining
a feasible solution to the relaxed problem by forming a
bi-level optimization problem. A rank minimization technique
is introduced in the upper-level problem to guarantee the
tightness of the procured optimal solution in the lower-level
problem. In the end, to solve the bi-level problem, an
equivalent single-level problem is presented by leveraging the
dual form of the lower-level problem. An overview of the
proposed methodology is displayed in Fig. 3.

A. The Proposed Relaxation Scheme

To deal with the non-convexity issue raised in Section II,
we introduce the lifting variable (mt

p,s)
2/prtp,s

lift−→ γtp,s to
relax the non-convex term within the natural gas dynamics
equation. As a result, (4j) is converted to the relaxed equation
introduced by (5).

prt+1
p,s+1 − prt+1

p,s

∆x
+
mt+1
p,s+1 −mt

p,s+1

(πD2/2)∆t
+
mt+1
p,s −mt

p,s

(πD2/2)∆t

+
γtp,s

(π2D5/8fc2)
= 0; ∀p ∈ P, s ∈ Sp, t ∈ T : ζtp,s

(5)

The lifting step relaxes the original dynamic OGF problem
(4) as it deals with the non-linear term. However, the solution
procured by the relaxed problem might not be necessarily
feasible. The γtp,s acquired from the primal relaxation problem
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Goal: Solve the non-linear OGF problem presented in (4)

Apply lifting 
మ


to (4) and reach the convex relaxed OGF: (4a)-(4i), (5)

Form the bi-level problem (7) that in its upper-level aims to tighten the 
convex relaxation and in its lower-level optimizes the relaxed OGF problem

Add objective (7a) and PSD cone 
constraint (7c) which together 

tighten (7) by forcing SDP matrices 
to become near rank-1, ensuring the 
feasibility of lower-level problem

Obtain closed-form of the relaxed 
OGF by finding its dual (8) and 

forming objective equality 
constraint (9), which together 
guarantee the optimality of the 

solution to closed-form problem: 
(4a)-(4i), (5), (8b)-(8j), (9)

Replace the relaxed OGF problem in the lower-level of the bi-level problem 
(7) with its closed-form constraints to reach the equivalent single-level 

problem (10)

Rank minimization

Lifting step

Bi-level formulation

Duality theory

Equivalent single-level problem

Fig. 3. The flowchart of the proposed rank minimization scheme

presented in (4b)-(4i) and (5) cannot guarantee that mt
p,s

and prtp,s can be uniquely obtained. The bi-level optimization
problem is presented here to resolve the issue. The rank is
minimized in the upper-level problem and solved to optimality
in the lower-level problem so that the procured solution is
feasible and optimal.

B. Rank Minimization via Bi-level Formulation

In the standard rank minimization approach, the relaxed
problem is solved by addition of a penalty term to the objective
function [31]–[34]. Whereas in the presented work, a bi-level
problem is presented which minimizes rank in the objective
of its upper-level problem and considers the relaxed problem
in its lower level. Doing so changes the problem structure
and improves the tightness of the solution significantly. The
upper-level problem of the formulated bi-level problem aims
to enforce the tightness of the presented relaxation scheme.
The optimality of the procured solution is also achieved in
the lower-level problem. To achieve the desired tightness, the
matrix formed in (6) should be rank-1 for all segments of all
pipes in the natural gas infrastructure at all times.[

prtp,s mt
p,s

mt
p,s γtp,s

]
, ∀p ∈ P, s ∈ Sp, t ∈ T (6)

To obtain a tight near-rank-1 solution for the relaxed natural
gas operation problem, an objective function that minimizes
the lifting variable γtp,s is assigned to the upper-level problem,
and a Positive Semi-Definite (PSD) constraint is added. The
PSD constraint connects the principle terms prtp,s and mt

p,s

with the lifting term γtp,s. If the cone matrix is rank-1, the
lifting term accurately represents the relationship between the
principal elements. The obtained bi-level problem is presented
in (7).

min
γ

∑
t∈T

∑
p∈P

∑
s∈Sp

γtp,s (7a)

subject to:

γ ∈ argmin {(4a) subject to: (4b)-(4i), (5)} (7b)[
prtp,s mt

p,s

mt
p,s γtp,s

]
� 0, ∀p ∈ P, s ∈ Sp, t ∈ T (7c)

Here, the objective function aims to minimize the lifting
variable γ. The minimization objective and the PSD constraint
force the SDP matrices to become rank-1 to ensure the
tightness of the obtained solution. The rank of the rendered
SDP matrices is near one, i.e. the largest eigenvalue of each
matrix dominates the rest of them. It is noteworthy to
mention that the SDP cone in (7c) is of size 2 × 2, which is
mathematically equivalent to the SOC constraint. Using SOC
relaxation instead of SDP could result in marginally faster
solution times at the price of slightly less tight relaxation. To
solve the bi-level problem (7), the lower-level problem should
be presented as a set of constraints (i.e., its closed-form) by
obtaining the dual of the relaxed problem and employing
the primal-dual constraint equalizing the objectives of the
primal and dual problems. The fundamental differences of a
bi-level optimization problem and a multi-objective problem
are discussed in [35].

Our novelty compared with the standard rank minimization
approaches [31]–[34], [36] is the employment of the bi-level
presentation. In standard rank minimization methods, the
objective function (4a) is perturbed by the addition of the
penalty term (7a). This method leads to a multi-objective
single-level problem and may not result in a tight relaxation.
With changes in the weights of each objective, different
solutions are obtained. To solve this issue, a bi-level problem
formulation is introduced that emphasizes on the relaxation
tightness. The rank minimization objective is placed in the
upper-level problem to ensure the tightness of the solution.
Hence, the upper-level OGF problem returns feasible and
physically meaningful solutions to the original non-convex
problem. Also, the lower-level objective aims to minimize the
cost of the OGF problem, meaning the procured solution is
optimal.

C. The Closed-Form Representation of the Relaxed OGF
Problem

By relaxing the non-linear term in the original OGF
problem, a convex formulation is reached. This allows
employing the dual form of the relaxed problem and presenting
the lower-level problem as a set of constraints. To obtain the
closed-form of the relaxed OGF problem, the constraints of the
primal and dual problems along with the primal-dual objective
pairing constraint are employed. In front of each constraint
in the primal problem, the corresponding dual variables are
symbolized, and vice versa. The dual form of the relaxed
primal problem presented by (4a)-(4i) and (5) is formulated
in (8).

max
λ,µ,µ

∑
t∈T

∑
j∈J

λLj,t
∑
l∈Lj

dGl,t +
∑
t∈T

∑
g∈G

(vGg µ
G
g,t
− vGg µGg,t)

−
∑
t∈T

∑
u∈U

FGu (PUu,t)µ
U
u,t +

∑
t∈T

∑
j∈J

(prJ
j
µP
j,t
− prJj µPj,t)

(8a)
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subject to:

µU
u,t
− µUu,t − λLju,t ≤ −κG, ∀u ∈ U , t ∈ T : du,t (8b)

µP
j,t
− µPj,t + λtoptoj ,t

+ λfr
pfr
j ,t
≤ 0,

∀j ∈ J \ C, t ∈ T : prJj,t

(8c)

µP
j,t
− µPj,t + λtoptoj ,t

+ µc
pfr
j ,t
− Γ.µc

pfr
j ,t
≤ 0,

∀j ∈ C, t ∈ T : prJj,t
(8d)

λLj,t ≥ 0, ∀j ∈ J frp , t ∈ T : f ip,t (8e)

λLj,t ≤ 0, ∀j ∈ J top , t ∈ T : fop,t (8f)

µG
g,t
− µGg,t + λLj,t = ξtg,∀g ∈ G, j ∈ Jg, t ∈ T : vGj,t (8g)

ηt−1p,s−1 − ηtp,s−1
2∆t

+
ηt−1p,s − ηtp,s

2∆t
+
ζt−1p,s−1 − ζt−1p,s

∆x
≤ 0,

∀p ∈ P, s ∈ Sp, t ∈ T : prtp,s

(8h)

ηt−1p,s−1 − ηt−1p,s

(πD2/4c2)∆x
+
ζt−1p,s−1 − ζtp,s−1

(πD2/2)∆t
+
ζt−1p,s − ζtp,s
(πD2/2)∆t

≤ 0,

∀p ∈ P, s ∈ Sp, t ∈ T : mt
p,s

(8i)

ζtp,s ≤ 0, ∀p ∈ P, s ∈ Sp, t ∈ T : γtp,s (8j)

In (8b)-(8j), the corresponding variables for which the dual
is obtained are presented in front of each constraint. The
primal-dual equality constraint is presented in (9) to achieve
the closed-form of the lower-level problem, which is added
to the set of constraints presenting the closed-form of the
lower-level problem (4b)-(4i), (5), and (8b)-(8j). Thus, the
lower-level problem which ensures the optimality of the OGF
problem is presented in the closed-form by (4b)-(4i), (5),
(8b)-(8j), (9).∑

t∈T

∑
j∈J

λLj,t
∑
l∈Lj

dGl,t +
∑
t∈T

∑
g∈G

(vGg µ
G
g,t
− vGg µGg,t)

+
∑
t∈T

∑
j∈J

(prJ
j
µP
j,t
− prJj µPj,t)−

∑
t∈T

∑
u∈U

FGu (PUu,t) =

∑
t∈T

∑
g∈G

ξtgv
G
g,t + κG

∑
t∈T

∑
u∈U

(FGu (PUu,t)− du,t)

(9)

D. The Equivalent Single-level Rank Minimization Problem
for the Relaxed OGF Problem

Finally, by transforming the lower-level problem into a set
of constraints, an equivalent single-level problem is obtained
with the general form displayed in (10).

min
γ

∑
t∈T

∑
p∈P

∑
s∈Sp

γtp,s (10a)

subject to:

(4b)− (4i), (5), (7c), (8b)− (8j), (9), (10b)

The presented problem (10) is a single-level optimization
with sparse SDP cones related to each segment of each
pipeline at each time. As the computation order of the SDP
problem is associated with the size of these 2×2 matrices and
the size of each matrix will not change with the scaling of
the network, the proposed approach will be able to scale for
problems associated with various network sizes efficiently.

IV. RESULTS AND DISCUSSIONS

This section comprises two cases. In the first case,
the operation problem in a sample interdependent network
including a 6-bus electricity network and a 6-junction natural
gas network is presented. In this case, two critical discussions
are presented. First, it is discussed why the Weymouth
equation is not suitable for the short-term operation problem,
as it leverages approximations that are based on conditions
that do not hold in shorter periods. Second, the merit of the
proposed methodology is demonstrated according to the results
obtained by applying the proposed model. It is shown that
with the proposed relaxation model, a tight optimal solution is
procured, which requires substantially lower solver time than
the original dynamics model. In the second case, the results of
applying the proposed model to a larger network are displayed.
This network consists of the modified IEEE 118 bus network
combined with a 10 junction natural gas network. For the
original non-convex OGF problem and the proposed model,
the time step length is 5 minutes, i.e., ∆t = 300 s, and the
length of pipe segments is 5 kilometers, i.e., ∆x = 5000 m.
All simulations are performed on a PC with an Intel Core i7
3.60GHz CPU using Julia programming language [37] in the
JuMP [38] environment. The non-convex model is solved by
IPOPT [39], while the MOSEK [40] solver is used to solve
the proposed formulation. The required data for replication
of the results in case studies is available at [41].

Fig. 4. 6-Junction natural gas network coupled with 6-bus power network

A. A Sample Interdependent Electricity and Natural Gas
Network

First, the incapability of the Weymouth model in short-term
operation scenarios is illustrated and compared against the
solution of the non-convex model. Then, the accuracy and
exactness of the proposed relaxation method are displayed.
The configuration of the test 6-junction natural gas network
coupled with a 6-bus power network is displayed in Fig. 4.
The natural gas network serves two types of demands. First,
two time-varying heat demands with peak values of 1000
(kcf/hr) and 500 (kcf/hr) are to be fed at junctions a and
c, respectively. These demand points have a high priority and
must be served at all times. The second type of demand served
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by the natural gas network is the natural gas required for the
operation of gas-fired units within the 6-bus power network.
This demand is placed on junction ‘a’ and is of lower priority
than the heat demand so that it can be shed. The specifications
of the natural gas network and suppliers are displayed in
Table I. A compressor with a maximum compression ratio
of 1.1 is also placed on pipe 3. Pipe 3 is represented by two
sections to distinguish between pressures at the two ends of
the compressor.

TABLE I
6-JUNCTION NATURAL GAS NETWORK SPECIFICATIONS

Pipelines
Pipe From To Length (km)

1 b a 100
2 d b 80
3 e b 120
4 e c 100
5 f e 80

Suppliers
Number vG (kcf/hr) vG (kcf/hr) Cost ($/kcf )

1 125 875 1.2
2 200 1100 1

1) Limitation of the Weymouth equation in the natural gas
short-term operation problem: A short-term scenario with
a varying gas load is generated to exhibit the shortcomings
of the Weymouth equation in modeling natural gas network
dynamics. Then, the OGF equations are formed and solved
for both the non-linear OGF problem presented in (4) and
the Weymouth model given in (3) as presented in [18].
Fig. 5 illustrates the dispatch of the different units in the
power network from 11 A.M. to 7 P.M. (corresponding to
minutes 660 through 1140 of the day). It is supposed that
this network enjoys a high penetration level of renewable
generation, including solar photovoltaic (PV) and wind turbine
(WT) units.

Fig. 5. Electric power dispatch of units in the 6-bus power network

During the first hour of operation, the renewable units can
provide the required demand. However, as time passes, the
electricity demand gradually increases, and the PV generation
drops. Consequently, the thermal unit output is gradually
increased, to the point where it cannot meet the growing
demand and the gas-fired unit comes online. A similar pattern
happens almost every day inside power networks that contain
both gas-fired and renewable generation units. The outcome
is always the same: a surge in natural gas demand over the
span of a few hours (refer to Fig. 1). For systems with high

renewable penetration levels, the change in demand is more
severe and stochastic, depending on the weather conditions.

The major drawback of employing the Weymouth model
is its inability to incorporate the variations in demand and
properly model their impact on the natural gas network
dynamics. In addition, the Weymouth model presents an
approximation of the original natural gas dynamics model. In
some cases, the combined effect of these two issues can lead
to inaccurate results, which may bring about power system
outages and demand curtailment. Figs. 6 and 7 illustrate the
results of the simulations performed with the Weymouth and
original dynamics models, respectively. Comparing Fig. 6
with Fig. 7, the first point that stands out is the time axis.
The non-convex model captures the state every 300 seconds,
while the Weymouth formulation is incapable of modeling
the temporal behavior of natural gas. One assumption of
the Weymouth equation is that ∆t → ∞, and here for
this assumption to hold, 1-hour intervals are considered.
Subsequently, only a few snapshots of the system can be
chosen when implementing the Weymouth model. The
non-convex model enjoys 12 intervals per hour, while the
Weymouth model reports only hourly data. One consequence
of this issue is missing critical information, such as the value
of demand, since the Weymouth model averages over the
hourly data points. In this case, according to Fig. 7, the
momentary demand value at minute 695 of the day as seen
by the non-convex model is equal to 1380 (Skcf/hr). It
is observed from Fig. 6 that this value is missed with the
Weymouth model, and it only observes one data point for the
12th hour, i.e., 1354 (Skcf/hr).

Utilizing the Weymouth model may lead to misleading
solution. According to Fig. 6, this system can fully provide
the required gas fuel for the 8-hour operation period. The
non-convex model, on the other hand, reports differently.
According to Fig. 7, the system cannot meet the gas-fired
unit’s demand from minute 1055 to 1140 of the day. This
failure is not negligible and could bring about serious fuel
security issues. During these 85 minutes, more than 80%
of the desired gas for the gas-fired unit is not delivered,
which will lead to inevitable outages in the electricity network.

One limitation of natural gas supply resources is their
inability to respond to sudden changes in gas demand, which
is a fundamental difference between the natural gas network
and the electricity network. Unlike electricity that transmits
almost instantly, natural gas velocity inside the pipeline is
around 40 km/h. Often, it takes a few hours for the gas
supplied at the source junction to reach the demand junction.
Another limitation of the Weymouth model is that it cannot
properly model this characteristic of natural gas suppliers.
Since the Weymouth equation is time-invariant, it is observed
in Fig. 6 that the overall supplier output is constantly changing
to equalize the system demand. However, the non-convex
model indicates that the output of natural gas suppliers
does not vary with the change in demand. The output of
supplier 1 in Fig. 6 during the hours 15 to 17 increases
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Fig. 6. Supply demand curve of 6-junction natural gas network with
Weymouth model

Fig. 7. Supply demand curve of 6-junction natural gas network with
non-convex model

from 184.9 (Skcf/hr) to 504.2 (Skcf/hr). The output of the
same supplier for the corresponding period according to the
results of the non-convex model in Fig. 7 increases only
from 344.6 (Skcf/hr) to 418.6 (Skcf/hr). The variations in
natural gas demand are addressed by the adjustment of the
pressure inside pipelines. It is concluded that the Weymouth
equation neglects the capability of natural gas pressure in
dealing with variations. This observation highlights the merit
of employing the proposed short-term operation model to
prepare the network to hedge against uncertain demand. In a
nutshell, the takeaways from the presented discussion are as
follows:

• The Weymouth equation is an approximated model based
on assumptions that do not hold in the short-term horizon.

• The Weymouth model is incapable of capturing and
representing dynamic temporal relations inside the natural
gas network. For instance, the Weymouth equation equalizes
natural gas demand and supply momentarily, whereas in
reality, it could take a long time for natural gas to travel
from the source junction to the demand junction.

• The Weymouth model misses out on all of the intra-hour
information. The output power of gas-fired units varies
distinctly due to their high ramping rates, which leads to
excessive alterations in natural gas demand. Thus, applying
an exact model with dynamics is crucial to capture these
changes in a few minutes.

• The results obtained by the Weymouth model are not
trustworthy in terms of natural gas fuel availability. A case is

designed and presented to illustrate this issue particularly.
It is observed that the results of the OGF problem when
applying the Weymouth model differ from those obtained
by utilizing the original non-convex model with natural gas
dynamics, which could result in costly consequences in the
operation of a power system with several gas-fired units.
Utilizing a steady-state OGF model is essentially similar

to neglecting the natural gas speed of delivery. The presented
discussion exemplifies how overlooking the transients in the
natural gas network could lead to inaccuracies that affect
power system operation.

2) Validation of the proposed rank minimization
approach: This part illustrates that the proposed relaxation
model can incorporate dynamics of the gas network correctly
by extracting a tight, optimal, and feasible solution. Unlike
the Weymouth equation, this model is time-variant, which is
crucial to problems in short-term time scales. Furthermore, the
proposed scheme does not require long solver times, which
is the major issue with non-convex models. The results of
the proposed relaxation scheme are presented and compared
with the original non-convex model (4), the simple sparse
SDP method, and the standard rank minimization relaxation
method. The simple sparse SDP method solves the lifted form
of the primal side equations (4), i.e., (5) replaces (4j), with
the addition of the PSD constraint (7c). The standard rank
minimization relaxation is similar to the simple SDP relaxation
but adds the penalty term (7a) to its objective function. The
performance comparison of these methods is presented in
Table II, where the non-convex column refers to the results
of solving problem (4) with an interior point solver.

TABLE II
PERFORMANCE AND RESULTS COMPARISON OF FOUR METHODS

Model Simple SDP Standard
Rank Minimization Proposed Non-Convex

Solver time (s) 0.41 1.04 1.20 56.8
Objective ($) 19,772 21,288 21,343 21,658

Tightness ratio 2.16 6.14 12.43 -

It is noticed that the proposed approach substantially
decreases the solution time compared to the one required by
the non-convex model. The presented solution method renders
a high-quality tight solution while not significantly increasing
the computation burden of the relaxation method compared
to the simple sparse SDP and standard rank minimization
relaxation methods. It is observed that the solver time for the
proposed method is only 1.2 seconds, whereas the solver time
when using the exact dynamics model (4) is 56.8 seconds. The
solver time of the proposed model for the 24-hour simulation
horizon is 13.45 seconds. In Table II, the tightness ratios
of eigenvalues for the matrix in (6) are presented. In [42],
the logarithmic ratio of eigenvalues of the matrix (6) is
calculated to measure relaxation tightness. The tightness ratio
measures the logarithmic ratio of the largest and second-largest
eigenvalues of the SDP matrix. If this ratio becomes high,
meaning that the second eigenvalue is dominated by the first
one, the matrix can be considered rank-1. The tightness ratio is
reported for all pipes, at each segment and time. The reported
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tightness ratio in Table II is the average for all spatio-temporal
instances over the natural gas network. A tightness ratio of
12.43 means that the error for recovering the lifted variables
is in the order of ∼ 10−12.

Comparing the results of the simulations obtained by
applying several models is almost impossible as we cannot
come up with a global indicator to capture the quality
of objective value, tightness, and solver time as these are
different units. However, given the low tightness ratios of
other relaxation methods, the lower solution time and objective
values of other relaxation approaches do not indicate their
superiority. The procured objective value of the natural
gas operation problem presented in Table II reveals that
all three relaxation methods provide a lower bound for the
objective value. However, the critical point is that the solution
procured by the proposed method is feasible for the original
non-convex problem, while this is not the case for the other
relaxation schemes. That is why the objective values of the
implemented relaxation methods are not easily comparable.
The solution rendered by the simple SDP or the standard rank
minimization methods might not be physically meaningful
given their relatively low tightness ratios, i.e., lower than the
minimum feasible solution. The one rendered by the nonlinear
model is a local minimum solution, i.e., higher than the best
available minimum solution. It is noteworthy to mention
if SOC cones are used instead of SDP cones, solutions are
obtained slightly faster but with a smaller tightness ratio (i.e.
less reliable solutions).

According to the reported tightness ratio values, the
procured answer with our proposed method is tight and
physically meaningful for all pipe segments during all
time intervals of the day. Fig. 8 provides the values for
the tightness of the solution obtained with the proposed
model across pipe 2. Using smaller time intervals allows
us to investigate the characteristics of each pipe of the
system in both spatio-temporal scopes. This results in an
exhaustive understanding of the natural gas dynamics that
are taking place inside the pipes at all locations and times.
The visualization of the natural gas mass flow throughout
pipelines can convey a better perception of the linepack at all
times. Figs. 9 and 10 illustrate the pressure and mass flow
rate across the segments of pipe 2, respectively. Fig. 9 shows

Fig. 8. Tightness of eigenvalues for SDP matrix for pipe 2

how pressure is adjusted throughout the day to feed the load.
It is observed that inside a pipe, pressure decreases gradually
in the direction of gas flow, which in this case is from the
1st segment of the pipe toward its last segment. As exhibited
in Fig. 10, the mass flow rate at the end of pipe 2 displays
the same trend as the demand curve. At the beginning of this
pipe, the mass flow rate is almost uniform because it stems
from a natural gas source.

Fig. 9. Pressure across pipe 2 at different time steps

Fig. 10. Mass flow rate across pipe 2 at different time steps

As shown in Table II, it is also noticed that the objective
value of the results procured by implementing the proposed
model, while the rendered solution is feasible for the original
non-convex problem, is smaller than the objective value
obtained by applying the non-linear and non-convex model.
While the solution procured by the non-convex model might
be a local solution, the proposed convex model can render a
higher quality solution with a lower operating cost which is
also feasible for the original non-convex problem. Figs. 11 and
12 show the pressures at junctions of the 6-junction natural
gas network acquired by the non-convex and the proposed
model. It is noticed that except for junction ‘f’, the pressures
at all junctions reached roughly equal patterns and values for
these two models. Even for junction ‘f’, the pattern in both of
these figures is the same during the simulation horizon. When
looking more closely, it is observed that the pressure values
for the proposed model are slightly less than the pressure
values obtained by the non-convex model. The governing
equations of the OGF problem are more sensitive to pressure
difference than the pressure value itself. The values and figures
presented in this section strongly suggest that the presented
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convex relaxation method with the rank minimization problem
addresses the shortcomings of the non-linear models. It will
deliver a better quality solution with a smaller computation
burden and an optimal solution that is tight enough to be
feasible for the original non-convex problem.

Fig. 11. Pressures at the 6-junction network acquired with the dynamics
model

Fig. 12. Pressures at the 6-junction network acquired with the proposed model

The model choice and the relaxation results of the proposed
work display considerably better performance compared with
past works in the literature due to superiority in model
accuracy, granularity, and relaxation method tightness. Table
III shows a comparison of 4 model choices and displays
the percentage error values of their results against the PDE
model. The listed works use gas flow models with simplifying
assumptions (such as neglecting acceleration) which result in a
formulation much similar to Weymouth model. It is observed
that the model choice and discretization level of the presented
work lead to a substantial reduction in modeling error and
relaxation error values. The quality of the decisions of other
models and their convex-relaxed forms are not comparable
with the PDE results, and their relaxations lead to small
tightness ratios.

Fig. 13 visualizes a comparison of the results of relaxed
models proposed in [21], [22], [28], and this work. Although
the authors in [28] did not propose any relaxation scheme,
the SOC method was applied to their non-convex model to
present a better comparison. Contrary to the other methods, the
results of the proposed relaxation scheme are both consistent
with the results of the PDE model and the proposed model’s
non-convex original form.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MODELS AND GRANULARITY

CHOICES

Reference Spatio-temporal
discretization

Non-convex
model error

Tightness
ratio

[21] ∆x = 80km, ∆t = 1hr 17.7% 3.23
[22] ∆x = 20km, ∆t = 1hr 14.4% 2.07
[28] ∆x = 20km, ∆t = 15min 4.0% NA (2.05 with SOC)

Proposed ∆x = 5km, ∆t = 5min 1.1% 2.43

Fig. 13. Comparison of mass flow rate at pipe 2 when applying relaxed
models

B. A Larger Interdependent Electricity and Natural Gas
Network

The proposed model is also capable of dealing with larger
problems. In this part, the simulation focused on a 4-hour
period operation problem of a larger interdependent network
to illustrate the scalability of the proposed method. The
composition of the modified IEEE 118 bus network with a
10-junction natural gas network is considered for this case. It
is supposed that the modified network is highly renewable
integrated. The time-step length for the simulation of the
power network is 1 hour, while the time intervals for the
natural gas network are equal to 5 minutes. The 10-junction
10-pipe natural gas network has a mesh structure, and two
compressors with the maximum compression ratio of 1.1 are
placed on pipes 1 and 8. It serves two types of loads, the

Fig. 14. Structure of the large network case
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heat demand and the fuel demand for gas-fired units of the
electricity network. The structure of the coupled network is
displayed in Fig. 14. Overall, 8 gas-fired units are present in
the power system, and the results for their hourly dispatch are
displayed in Table IV.

TABLE IV
GAS-FIRED UNIT HOURLY DISPATCH IN 118 BUS SYSTEM

Unit ID 1 2 3 4 5 6 7 8
Hour 14 (MW) 0 0 0 0 0 0 0 35
Hour 15 (MW) 0 0 0 0 75 149 100 100
Hour 16 (MW) 0 0 57 100 550 185 100 100
Hour 17 (MW) 100 100 100 100 550 185 100 150

Similar to the previous case, applying the proposed
relaxation method to a more extensive problem also leads to
the procurement of very tight solutions. The mean values for
the tightness ratios over all segments of each pipe for all time
steps are reported in Table V. According to these values, it
can be argued that the procured solution is tight and reliable
for this case. The overall average tightness ratio of the system
is equal to 8.9, which is satisfactory.

TABLE V
AVERAGE SPATIO-TEMPORAL TIGHTNESS RATIO OF PIPES

Pipe 1 2 3 4 5 6 7 8 9 10
Tightness 9.7 7.9 8.3 9.8 9.6 8.6 5.1 9.3 10.0 9.3

By comparing the supply-demand curve and the junction
pressure curve of this case, it can be observed that the volume
of suppliers will not change over time to serve the demand.
It is fascinating to notice that the adjustments in the pipeline
pressures serve the variations in the natural gas demand rather
than changes in the supplier gas volume. In Fig. 15 (a)
and (b), respectively, the pressure at the junctions and the
supply-demand curve of the natural gas system are displayed.
It is observed that for this setting, all the fuel demand is served.
Also, the hourly spikes in the fuel demand curve are consistent
with the generation dispatch of units given in Table IV.

Fig. 15. (a) Pressure and (b) supply-demand curve in the large case

Unlike electricity, natural gas does not travel instantly, and
the dynamics inside pipelines are not observed momentarily.
Therefore, the total demand of this system is not necessarily
equal to its total supply at each moment. More precisely, it
is the changes in the pressure at the junctions which is an

indicator of the mass within pipelines. To meet the variations
in demand, the natural gas pressure at the demand junction
plays the most crucial role. At min 900 (hour 15), units 5, 6,
and 7 start to come online and join the previously committed
unit 8. The pressure at junction ‘j’ at this moment drops to
meet the increased demand placed on this junction. A similar
story happens with the pressure at other demand junctions at
the following two-hourly dispatch marks, when units 3 and
4 come online at min 960 (hour 16), and when units 1 and
2 come online at min 1020 (hour 17), pressures at junctions.
The impact of additional fuel demand at these two hours can
be observed on the pressure fall at minutes 960 and 1020 for
the junctions on which these generators are placed, as shown
in Fig. 14, i.e., junctions ‘e’ and ‘g’.

V. CONCLUSION

Inside a natural gas network with a varying natural gas
demand, the output of gas suppliers does not necessarily follow
the demand trend. This paper demonstrates how the varying
natural gas mass demand is matched through alterations in
pressure values. The incapability of the Weymouth equation in
modeling the demand variations is illustrated. Proper modeling
of natural gas dynamics is crucial for the short-term operation
of the electricity grid in light of fuel security concerns. The
short-term operation problem requires utilizing an OGF model
that is both accurate and exact. A rank minimization method
is proposed for the relaxed OGF model with dynamics to
address this challenge. Simulation results of applying the
presented approach indicate that it can successfully incorporate
the dynamics of the natural gas network while significantly
reducing the computation time compared to the non-convex
method. Due to its extremely high tightness ratio, the solution
procured with the proposed method is feasible for the original
non-convex problem with superior quality than the non-convex
model. Results of the proposed model are also compared with
other works in the literature. The observations clarify the
importance of model choice and granularity on the accuracy
of the results. The scalability of the proposed approach to
efficiently solve larger problems is also demonstrated. The
resulting convex transient OGF model in this work can be
viewed as an efficient tool which can be utilized in the
coordinated short-term operation problem of the electricity
grid and natural gas network with dynamics.
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