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Resilient Expansion Planning of Electricity Grid
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Abstract—Public Safety Power Shut-off (PSPS) during
potentially dangerous weather conditions is an emergency
measure within areas prone to wildfires. While balancing the
risk of wildfire ignition and the continuation of energy supply
is a short-term operation challenge, this paper explores the
optimal long-term resilient expansion planning strategies. With
the quantified risk of wildfire ignition, the proposed expansion
planning problem maximizes the supplied power to the end-users
while limiting the risk of wildfire ignition. The presented
scheme provides utility decision-makers with three groups of
network expansion decisions, namely addition of new lines,
modification of existing lines, and installation of Distributed
Energy Resources (DERs). Given the uncertainty of DERs and
wildfire risk, a two-stage robust optimization problem is proposed
which ensures power system resilience against unfavorable
events. The case studies illustrate how the presented model
balances between shutting off customers, DER installation, and
line addition/modification while inhibiting wildfire ignition risk.
Besides, the results suggest that, with appropriate transmission
switching, DER installation can be the optimal choice for meeting
the growing demand while limiting wildfire ignition risk. The
implications of different risk level choices are illustrated, and the
impacts of uncertainties on the expansion decisions are explored.
Finally, the results of applying the proposed model to the IEEE
118-bus test network are illustrated.

Index Terms—Wildfire, Expansion planning, Two-stage robust
optimization, Resilience, Uncertainties, Natural disasters

NOMENCLATURE

Indices and Sets

b ∈ B Buses in the power system
d ∈ D Electricity demands
e ∈ E Set of existing powerlines
g ∈ G Generation units
k ∈ K Set of iterations (uncertainties) in the algorithm
l ∈ L Lines in the power system
n ∈ N Set of candidate new lines
r ∈ R Renewable generation units
s ∈ S Set of periods in the duration curve
y ∈ Y Set of planning years
z ∈ Z Set of segments in the linearized cost function
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Binary Variables
IN Decision for construction on new lines
ME Decision for modification of existing lines
OE Decision for energization status of existing lines
uD/R/ψ Decision for realization of uncertainties in

demand, DER energy availability, and wildfire
risk

XE/N Auxiliary variable for energization status of
modified existing lines or constructed new lines

Continuous Variables
C Operation cost of the system
pD/G/L/R Real power dispatch of demands, generation units,

lines, or DERs
PR Installed capacity of DER unit
θB Voltage angle of bus
ΨL Wildfire risk score if line is energized
µ, µ, λ Dual variables

Parameters
cG Cost of thermal unit generation
cM/N Cost of line modification/ new line addition
Hs Hours in each period of the duration curve
pD/R Forecast demand power and energy availability of

DERs
x Reactance of line
ϕ Budget of Uncertainty (BoU)
κD Unit cost for value of lost load
Λ An arbitrary large constant
Υ Wildfire risk tolerance limit of the network
∆D/R/ψ Factors for adjusting demand, DER energy

availability, and wildfire risk based on
uncertainties

∗, ∗ Lower/upper bound value indicators

I. INTRODUCTION

A. Motivation

IN the past decades, the number of wildfire events has been
following an upward trend [1]. Climate change and higher

average temperatures are counted among the contributing
factors to this shift [2]. Reportedly, power systems are listed
among the causes of wildfire ignition. From 2015 to 2017, the
electricity grid was responsible for 414 wildfire ignitions in
California, as declared by Pacific Gas & Electric Company [3].
More than 4,000 wildfires were associated with the electricity
grid between 2010 and 2014 in Texas [4]. Compared with
other ignition sources, wildfires sparked by power systems are
known to be more extensive [5]. Even though only 10% of
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wildfires are caused by power systems, they are responsible
for half of California’s catastrophic wildfires [6].

Several factors, including temperature, moisture,
precipitation, elevation, slope, and vegetation (age,
composition, and distribution) contribute to wildfire intensity
and extent within electricity grids [7]. However, these
elements are almost irrelevant in the first place, as wildfire
ignition by power systems is strongly correlated with wind
conditions. It is known that the probability of failures
within the electricity grid increases dramatically with the
rise in wind speed and gust [8]. Vegetation-driven ignitions
caused by electric arcs, phase-to-ground faults, clashing of
neighboring conductors (phase-to-phase faults), and contact
of powerlines with the surrounding plants are recognized as
major wildfire ignition causes by power systems [9]. Wind
could lead to wildfire ignition in power systems either directly
or indirectly. In conductor clashing (a.k.a. line slap), wind
directly causes powerline conductors to contact each other,
potentially releasing hot molten particles that could ignite
the combustible material below. Wind also indirectly causes
surrounding trees and branches to break powerlines and lead
to phase-to-ground faults [10].

Appropriate risk assessment tools are critical to the
operation of power systems facing wildfire outbursts. To
this end, Forest Fire Danger Index (FFDI), Keetch–Byram
drought index, Fire Potential Index (FPI), and Forest Fire
Ignition Probability Map are among the forecast tools that are
widely used worldwide. The resulting situational awareness
information is then utilized to decide on various preventive
exercises such as line de-energization, network topology
control, re-dispatch of generation units, and load shedding
[11]. In order to prevent wildfire ignition, utilities in
California embrace public safety power shut-off (PSPS) events
during extreme wind conditions by forcing mandatory outages
on end-users. During the period from 2019 to 2021, California
utilities have conducted 70 PSPS events [6]. Based on
short-term weather forecasts, utilities perform shut-offs when
wind speeds or gusts are estimated to reach exceedingly
hazardous levels.

In practice, performing PSPSs is extremely costly for both
the utility and the impacted communities; that is why they are
deemed as the last resort. PSPS events last an average of two
days, and the impacted families who cannot afford backup
generation should either evacuate, engage in emergency
power plans, or prepare to live without power for 2-6 days
[12]. PSPS events are particularly harmful to low-income
communities and medically vulnerable populations [13]. Some
estimates suggest that PSPS events cost the California
economy in the order of billion dollars [14]. From the
utility viewpoint, besides the loss of revenues, scheduling a
PSPS will induce a variety of operational costs including
but not limited to data acquisition and situational awareness
tools, switching (installation, sectionalizing, and maintenance),
consumer interactions (providing temporary generation and
storage devices, communications, legal, etc.), and restoration.
Here, the value of Lost Load (VOLL) is utilized as a surrogate
for the utility costs of line de-energizing under wildfire risk.

A pre-planned operation is essential to ensure the power

system’s reliability in providing energy to the customers. The
primary purpose of expansion planning is to make certain the
power grid can keep up with system-wide changes such as
electricity demand growth, changes in the generation fleet
portfolio, or even climate change, which could potentially
impact the system’s operations over the long term. The
main goal of this paper is to present an expansion planning
model that takes wildfire ignition risk associated with power
systems into consideration. PSPS events are not included in
the long-term planning, which motivated us to propose a
model that integrates the impacts of scheduled shut-offs into
expansion planning. With the looming threat of disastrous
wildfires, the proposed resilient expansion planning model
mitigates the overall wildfire risk of a power system and
minimizes the consequences of PSPS events for both the utility
and the customers.

In our previous work, we presented a risk score that
quantifies the risk of wildfire ignition caused by conductor
clashing [15]. It should be noted that surrounding vegetation
fuel is the determining factor in wildfire spread [16]. In
addition to that, wildfire ignition is also dependent on other
factors such as wind, humidity, and temperature. It is assumed
that a similar scoring metric is available that incorporates all
of the factors that impact wildfire ignitions within a power
grid. The term wildfire risk score in this work essentially
represents the likelihood (hence a parameter between 0 and 1)
of ignitions. A duration curve is generated which segregates
each year into several periods attributed to distinct values of
demand, renewable generation available energy, and wildfire
ignition risk. Since these values are not deterministic and
can be affected by stochasticities, a robust solution method
is proposed that accounts for these uncertainties.

The proposed wildfire-resilient framework provides system
planners with a planning tool that accounts for wildfire
hazardous conditions that necessitate power shut-offs. The
presented model aims to find the optimal expansion decisions
considering the risk of wildfires, a crucial aspect that is
non-existent in the relevant literature. The network expansion
decisions in this work are categorized into three groups:
addition of new lines, modification of the existing lines
(i.e., hardening measures), and installation of Distributed
Energy Resources (DERs). In this work, modification denotes
hardening measures that make power lines less vulnerable
to conditions that induce ignitions. For example, southern
Californian utilities such as San Diego Gas & Electric and
Southern California Edison have adopted the practice of
covering bare conductors (a.k.a. reconductoring) to mitigate
ignition probability through contact with neighboring wires,
objects, and structures such as cross arms [17], [18]. Other
modification practices in power systems include burying lines
(a.k.a. undergrounding), relocation of a line to an area with a
lower wildfire ignition risk, anchoring, increasing the number
of poles/towers, replacing wood poles with steel, installing
high-strength conductors, and increasing conductor spacing
[11]. In our proposed model, line modification is among the
planning decisions that the decision-maker takes to reduce the
wildfire risk of a line at a cost.
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B. Literature Review

The power system expansion planning problem has been
thoroughly investigated from various standpoints, such as
transmission expansion [19], distribution expansion [20],
generation expansion [21], microgrid expansion [22], and
simultaneous generation and transmission expansion [23]. In
addition, with the rapidly increasing interest in renewable
generation, expansion planning of power systems subject to the
growing penetration of these resources has grabbed research
attention [24]. Apart from expansion planning to match the
growing demand and renewable integration, researchers have
also studied the expansion problem considering environmental
conditions, such as climate change scenarios [25] and
rising temperatures [26]. In all of the mentioned aspects
of the expansion planning problem, the model parameters
can be considered deterministic [27] or stochastic [28].
Common approaches for tackling uncertainties in these
problems include but are not limited to scenario-based
methods [29], chance-constrained models [30], and multi-stage
approaches relying on feasibility/optimality cuts such as
column and constraint generation algorithm [31] and Benders’
decomposition [32].

Expansion planning with the aim of improving power
network resilience against natural disasters has been a subject
of interest. Optimal DER and switch placement considering
extreme weather scenarios are investigated in [33]. A model
for transmission network upgrade to improve resilience
against natural disasters is discussed in [34]. An integrated
electricity-natural gas system expansion planning model to
enhance the resilience of the electricity grid against natural
disasters is presented in [35]. A two-stage robust optimization
and co-expansion planning problem in integrated gas and
power systems to increase resilience against natural disasters
is presented in [36]. A generation and transmission expansion
planning to increase the resilience of the power system against
earthquakes and floods is presented in [37]. However, none of
the works in the literature investigates the expansion planning
problem considering wildfire risk. The need for a resilient
long-term planning framework to hedge against disastrous
wildfires has been highlighted in [11].

Most recently, the increasing occurrences of wildfires
have attracted research focus on this issue. Distribution
grid resilience in the case of ongoing wildfires considering
uncertainties in wildfire progression is discussed in [38].
The resilient operation of a transmission network in case
of stochastic wildfires is investigated in [39] with an
attacker-defender approach. Improving grid resilience during
wildfires by means of electric vehicles is also studied [40]. An
overview of the wildfire mitigation plans in power systems is
presented in [41]. According to the authors of [41], the existing
literature treats wildfires the same as other natural disasters,
while the interactions between the power system and wildfires
are unique (as power systems can contribute to the ignition of
wildfires). This work fills the mentioned gaps in the literature
by proposing a wildfire-resilient expansion planning problem.
The scheduled power shut-offs as a response to wildfire risk
are modeled, and the quantified wildfire risk is considered.

C. Summary of the Contributions

The main contributions of this paper are outlined as follows:
1) A framework for wildfire-resilient expansion planning is

presented for electricity grids under prolonged risk of wildfire
ignition. An advantage of the proposed method is that it can
incorporate any given wildfire risk assessment metric. Based
on the risk scores associated with each line, the objective
is to establish a balance between preemptive de-energization
of powerlines and expansion planning decisions, including
addition of new lines, modification of existing lines, and
installation of DER units.

2) The introduced model enables system planners with two
control parameters, namely risk tolerance (Υ) and Budget of
Uncertainty (BoU) (Φ). The former inhibits the overall wildfire
ignition risk induced by the power system, while the latter is
determined by the planner’s willingness to take risks.

3) A two-stage solution method is utilized to ensure
planning robustness against uncertainties not only in terms of
system demand and DER energy availability but also wildfire
risk. The proposed algorithm iteratively seeks worse-case
uncertainties based on planning decisions obtained in the
wildfire-resilient step. The resilient operation of the network
is established once the realized uncertainties cannot further
aggravate the system’s operation.

4) The effects of the planner’s desired risk tolerance level
are explored as a major driver impacting the decisions.
Besides, several cases are presented that investigate and
analyze the impacts of uncertainties and transmission
switching on the expansion decisions of the network.

II. PROBLEM FORMULATION

The wildfire-resilient expansion planning problem is
formulated as a two-stage robust optimization problem that
accounts for uncertainties in the system demand as well as
DER energy availability and wildfire risk. The first-stage
problem minimizes the overall costs of the system, including
expansion costs and operation costs. The here-and-now
decision variables P, I, and M are retrieved and then passed to
the second stage. The second-stage problem is a wait-and-see
step at which the uncertainties in system demand, DER
generation, and wildfire risk are determined. In this step, we
are interested in finding a subset of worst-case uncertainties
for the current here-and-now decisions given a budget of
uncertainty as part of a robust optimization approach. In
an iterative process, a new subset of uncertainty realizations
is obtained at the second-stage problem and added to the
uncertainty set K, which is passed back to the first-stage
problem to update here-and-now decisions. The uncertain
parameters are realized according to their deviation factor ∆
from the deterministic values. This procedure repeats until
the expansion planning decisions are no longer updated, i.e.,
worst-case realizations are determined. The diagram of the
proposed model is presented in Fig. 1.

A. Wildfire-Resilient Expansion Planning

The problem formulation for obtaining the here-and-now
decisions of the wildfire-resilient expansion planning problem
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II.A. First-stage problem

Wildfire-resilient expansion planning

Wildfire risk DemandDER availability

II.B. Second-stage problem

Subset of Worst-Case Uncertainty Realizations

Control 
parameters

Initial forecasts

Wildfire risk DemandDER availability

Realizing 
worst-case 

subset

Expansion decisions
- New lines
- Modified lines
- Installed DERs

Fig. 1. The flow diagram of the proposed modeling approach

is presented in (1). The objective function is comprised of two
parts. The first part accounts for the expansion costs of the
system, composed of the costs of new line construction, DER
installation, and line modification, respectively represented by
the first three terms in (1a). The second part of the objective
function represents the operation costs of the system over
the planning horizon, given by (1b). This term includes the
monetized load shedding penalty and the cost of electricity
generation, represented by the first and second terms in
(1b), respectively. The cost parameters are indexed by ‘y’ to
incorporate the inflation rates. If the scheduled PSPS events
lead to the discontinuation of energy supply, they will be
penalized through this approach. After each iteration of the
proposed algorithm, a new set of wait-and-see decisions is
obtained, which leads to different operation costs. According
to (1b), the operation cost of the system is considered the
highest one among all of the realized uncertainty subsets.

min
P,I,M

∑
Y


+
∑
N
cNl,y(I

N
l,y − INl,y−1)

+
∑
R
cRr,y(P

R
r,y − PRr,y−1)

+
∑
E
cMl,y(M

E
l,y −ME

l,y−1)

+ C (1a)

subject to:

C ≥
∑
Y

∑
S
Hs


∑
D
κD(pD,kd,s,y − p

D,k
d,s,y)

+
∑
G

∑
Z
cGg,z · pG,kg,z,s,y

 , ∀ K (1b)

pG
g
≤ pG,kg,s,y ≤ pGg , ∀ G,S,Y,K : µG

g,s,y
, µGg,s,y (1c)

0 ≤ pG,kg,z,s,y ≤ pGg,z, ∀ G,Z,S,Y,K : µGg,z,s,y (1d)∑
Z
pG,kg,z,s,y = pG,kg,s,y, ∀ G,S,Y,K : λGg,s,y (1e)

θBb ≤ θ
B,k
b,s,y ≤ θ

B

b , ∀ B,S,Y,K : µθ
b,s,y

, µθb,s,y (1f)

0 ≤ pR,kr,s,y ≤ PRr,y · pR,kr,s,y, ∀ R,S,Y,K : µRr,s,y (1g)

0 ≤ pD,kd,s,y ≤ p
D,k
d,s,y, ∀ D,S,Y,K : µDd,s,y (1h)∑

Gb

pG,kg,s,y +
∑
Rb

pR,kr,s,y +
∑
Lto

b

pL,kl,s,y −
∑
Lfr

b

pL,kl,s,y

=
∑
Db

pD,kd,s,y, ∀ B,S,Y,K : λBb,s,y (1i)

− Λ(1−OEl,s,y −XN
l,s,y) + pL,kl,s,y ≤

θB,k
bfr
l ,s,y

− θB,k
btol ,s,y

xl
≤ Λ(1−OEl,s,y −XN

l,s,y) + pL,kl,s,y,

∀ L,S,Y,K : µO
l,s,y

, µOl,s,y (1j)

− pLl (OEl,s,y +XN
l,s,y) ≤ p

L,k
l,s,y ≤

pLl (O
E
l,s,y +XN

l,s,y), ∀ L,S,Y,K : µL
l,s,y

, µLl,s,y (1k)

ΨL,kl,s,y = ψL,kl,s,y(O
E
l,s,y +XN

l,s,y − αψ ·XE
l,s,y),

∀ L,S,Y,K (1l)∑
L

∑
S
Hs ·ΨL,kl,s,y ≤ Υ, ∀ Y,K (1m)

XE
l,s,y ≤ME

l,y, ∀ E ,S,Y (1n)

XE
l,s,y ≤ OEl,s,y, ∀ E ,S,Y (1o)

XE
l,s,y ≥ME

l,y +OEl,s,y − 1, ∀ E ,S,Y (1p)

INl,y ≥ INl,y−1, ∀ N ,Y (1q)

ME
l,y ≥ME

l,y−1, ∀ E ,Y (1r)

PRr,y ≥ PRr,y−1, ∀ R,Y (1s)

The real power outputs of generation units are bounded by
(1c). The generation cost of the thermal units is approximated
by a piecewise linear function, where the power of each
segment is limited by (1d). The dispatched power of each
generation unit is equal to the summation of its segmented
powers, as constrained by (1e). The voltage angle on each bus
is bounded by (1f). The dispatched power of DER units is
constrained by (1g) where pR is a parameter ranging from 0
to 1 and represents the amount of renewable resource energy
availability at each period in the duration curve. Since there
is no distinction between governing equations of different
renewable units (i.e., wind and solar DERs), they are modeled
under the same set. The served demand power is limited by
(1h) where pD is a parameter representing the demand at
each period in the duration curve. The nodal balance at each
bus is given by (1i). The power flow equation is based on
DC approximation and is modeled by (1j). These inequality
constraints turn into an equality equation if a pre-existing
line (OE) or a newly constructed line (XN ) is energized, in
which case the expression (1 − OEl,s,y − XN

l,s,y) becomes 0.
A similar logic is utilized in (1k) to enforce the thermal limit
of power flowing through energized lines. This time, the real
power flowing through the line is always 0 unless the line is
energized, in which case the thermal constraints are applied.

The wildfire risk score of each line is calculated according
to (1l). To obtain the quantified wildfire risk score ψ, it is
supposed that the metric used in our previous work [15] can
be extended to integrate all factors that affect wildfire ignition
risk including but not limited to wind speed, vegetation, and
humidity. The proposed expansion method is not limited to
the choice of wildfire risk indicator and can adapt to indices
such as FPI and FFDI. For all energized lines, Ψ equals
the quantified risk score of that line. If a line is modified,
its score is adjusted by αψ which is a parameter between
0 and 1. To prevent wildfire-hazardous operation, the total
wildfire risk of the system in each year is limited to the risk
tolerance Υ according to (1m). This score is calculated by
physically modeling the 3D non-linear vibrational motion of
powerlines which considers numerous physical, structural, and
meteorological features including but not limited to the span of
the powerline, conductor diameter, and wind speed. Eqs. (1n),



5

(1o), and (1p) are used to maintain the linearity of the problem.
These equations are equivalent to the binary formulation
XE = ME · OE . The same linear transformation is utilized
to enforce the formulation XN = IN · ON . In the end, Eqs.
(1q), (1r), and (1s) are utilized to keep track of the planning
decisions made in previous years. In front of each constraint
in (1), the corresponding dual variables are displayed. It is
noticed that in the proposed expansion planning formulation,
the parameters pD,kd,s,y , pR,kr,s,y , and ψL,kl,s,y are indexed by k.
These parameters denote the realized uncertainties based on
the results of the second-stage problem.

B. Subset of Worst-Case Uncertainty Realizations

In this part, two formulations are proposed which
respectively find the worst-case uncertainty realizations for
variations in DER generation, demand power, and wildfire risk.

1) Uncertainties in DER generation and Electricity
Demand: The dual formulation by which the worst-case
realizations in DER energy availability and demand are
obtained is presented in (2). The dual objective is given by
(2a) and the dual constraints are described by (2b) through
(2i). In front of each dual constraint, the corresponding primal
variables are displayed. The goal of the presented problem
is to find the binary decisions u that lead to the worst-case
realizations. In order to obtain the wait-and-see decisions, the
objective function (2a) should be maximized. According to
the proposed model, if uncertainties are realized in demand
or DER energy availability, their corresponding values are
adjusted by ∆. Since we are only interested in the worst-case
realizations, it is supposed that the uncertainties only increase
the demand and reduce the DER energy availability. The total
count of realized uncertainties is enforced by the BoU as given
in (2h). The hat sign on top of here-and-now decision variables
in the dual objective denotes that these variables are passed
from the first-stage problem.

max
u,µ,λ

∑
S

∑
Y



−
∑
G

∑
Z
pGg,z · µGg,z,s,y

+
∑
G
(pG
g
· µG

g,s,y
− pGg · µGg,s,y)

+
∑
B
(θBb · µθb,s,y − θ

B

b · µθb,s,y)

+
∑
D
κD · pD,kd,s,y(1 + ∆D · uDd,s,y)

−
∑
D
pD,kd,s,y · µ

D
d,s,y(1 + ∆D · uDd,s,y)

−
∑
R
P̂Rr,y · pR,kr,s,y · µRr,s,y(1−∆R · uRr,s,y)

−
∑
L
Λ(1− ÔEl,s,y − X̂N

l,s,y)(µ
O
l,s,y

+ µOl,s,y)

−
∑
L
pLl (Ô

E
l,s,y + X̂N

l,s,y)(µ
L
l,s,y

+ µLl,s,y)



(2a)

subject to:

µG
g,s,y
− µGg,s,y − λGg,s,y +

∑
Bg

λBb,s,y = 0,

∀ G,S,Y : pGg,s,y (2b)

− µGg,z,s,y + λGg,s,y ≤ Hs · cGg,z, ∀ G,Z,S,Y : pGg,z,s,y (2c)

− µDd,s,y −
∑
Bd

λBb,s,y ≤ −Hs · κD, ∀ D,S,Y : pDd,s,y (2d)

− µRr,s,y +
∑
Br

λBb,s,y ≤ 0, ∀ R,S,Y : pRr,s,y (2e)

µθ
b,s,y
− µθb,s,y +

∑
Lto

b

µO

l,s,y
−µO

l,s,y

xl

−
∑
Lfr

b

µO

l,s,y
−µO

l,s,y

xl
= 0, ∀ B,S,Y : θBb,s,y (2f)

µL
l,s,y
− µLl,s,y + µO

l,s,y
− µOl,s,y +

∑
Bfr

l

λBb,s,y

−
∑
Bto

l

λBb,s,y = 0, ∀ L,S,Y : pLl,s,y (2g)

∑
S

∑
Y

(∑
R
uRr,s,y +

∑
D
uDd,s,y

)
≤ ϕ, (2h)

µ, µ ≥ 0, λ (2i)

It is noticed that in the objective function of the
dual problem, some non-linear terms appear that contain
binary-to-continuous variable multiplication. To avoid solving
a non-linear problem of this kind, a linearization process is
applied which is exemplified in (3). Here, the non-linear term
in (3a) is linearized by (3b)-(3d), where uRr,s,y is a binary
variable. Two auxiliary positive continuous variables ν and
ω which are bounded between 0 and Λ are required for this
linearization procedure.

νRr,s,y = µRr,s,y · uRr,s,y, ∀ R,S,Y (3a)

νRr,s,y = µRr,s,y − ωRr,s,y, ∀ R,S,Y (3b)

0 ≤ νRr,s,y ≤ Λ · uRr,s,y, ∀ R,S,Y (3c)

0 ≤ ωRr,s,y ≤ Λ · (1− uRr,s,y), ∀ R,S,Y (3d)

The same procedure is also applied to linearize the bi-linear
term νDr,s,y = µDr,s,y · uDr,s,y .

2) Uncertainties in Wildfire Risk: In this part, a formulation
is presented in (4) which realizes the worst-case uncertainties
in the wildfire risk scores, which can be raised by factors such
as variations in weather conditions. The objective function
(4a) aims to find the subset of binary decisions that maximize
the overall wildfire risk score of the network. It is supposed
that the worst-case realizations will only intensify the wildfire
ignition risk, i.e. the parameter ψ is increased by ∆ψ .
According to (4b), only the energized lines may be subject to
deviations in the wildfire risk. Additionally, the total number
of realized uncertainties cannot exceed the allocated budget as
enforced by (4c).

max
u

∑
L

∑
S

∑
Y
Hs ·ΨL,kl,s,y(1 + ∆ψ · uψl,s,y) (4a)

uψl,s,y ≤ Ô
E
l,s,y + X̂N

l,s,y, ∀ L,S,Y (4b)∑
L

∑
S

∑
Y
uψl,s,y ≤ ϕψ, (4c)

III. SOLUTION METHODOLOGY

The steps for solving the wildfire-resilient expansion
planning problem are presented in Alg. 1. The convergence
threshold, BoU, and risk tolerance are the inputs, while the
installed capacity of the DER resources and the decisions for
the construction and modification of lines are the outputs of
this algorithm. In the initial step, the current realization (k̂) is
set and the convergence indicator (η) is assigned an arbitrarily
large value. The algorithm’s convergence is determined based
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on a relative iterative error of χ, which represents the overall
system planning and operation costs, i.e., the objective value
of (1). At the beginning of each iteration, the convergence
criteria are checked. Steps 2-11 of Alg. 1 are repeated until
the convergence indicator drops below ϵ, in which case the
solution process culminates and the latest expansion decisions
are reported as the final solution.

Algorithm 1: Robust Wildfire-Resilient Expansion
Planning

Input : ϵ, ϕ, ϕψ, Υ
Output: P̂ , Î, M̂
Initiate: k̂ ← 1, χ(0) ← 0, η ← 100

1 while η ≥ ϵ do
2 K ← {1 : k̂}
3 χ(k̂) ← value of (1a)

4 P̂ , Î, M̂ ← (1)

5 η ←
χ(k̂) − χ(k̂−1)

χ(k̂−1)

× 100

6 ûR, ûD ← (2)
7 ûψ ← (4)

8 pD,k̂+1
d,s,y = pD,1d,s,y(1+∆D · ûDd,s,y), ∀ D,S,Y

9 pR,k̂+1
r,s,y = pR,1r,s,y(1−∆R · ûRr,s,y), ∀ R,S,Y

10 ψL,k̂+1
l,s,y = ψL,1l,s,y(1 + ∆ψ · ûψl,s,y), ∀ L,S,Y

11 k̂ ← k̂ + 1

12 end

In lines 3 and 4, the wildfire-resilient expansion planning
problem (1) is solved and its objective value is assigned to
the upper-bound variable χ. As a result, the here-and-now
decisions that indicate the DER installed capacity and line
construction/modification are obtained and stored. In line
5, the convergence indicator is calculated as the relative
difference of consecutive planning costs. Next, the worst-case
uncertainty realizations are found according to the results of
the expansion stage. To find the binary decision variables that
cause the worst-case realizations in demand and DER energy
availability, problem (2) is solved in line 6. Similarly, in line
7, problem (4) is solved to find the worst-case realizations
in wildfire risk. Finally, in lines 8-10, the binary decisions
obtained in lines 6 and 7 are used to update the demand,
DER energy availability, and wildfire risk values utilized for
the next iteration of the algorithm. In line 11, the current set
of uncertainties is updated to include the latest worst-case
scenarios. Steps 2-11 are placed in a while loop, meaning
they are repeated until the convergence condition is satisfied,
in which case the expansion planning decisions returned
at the last iteration are reported as the solution. System
decision-makers can utilize Alg. 1 according to their wildfire
risk tolerance level and obtain wildfire-resilient expansion
decisions.

IV. RESULTS AND DISCUSSIONS

In this section, several case studies are presented to
investigate the effectiveness of the proposed wildfire-resilient
expansion planning problem for a 10-year planning horizon.
First, the results of applying the robust expansion planning
algorithm to a 6-bus system are illustrated. To demonstrate the
merits of including wildfire risk tolerance and uncertainties
in the proposed wildfire-resilient expansion model, two
subsections are presented in parts IV.A.1 and IV.A.2,
respectively. In the next case, an analysis of the impact of
wildfire risk tolerance level on the planner’s decision-making
process is presented. This case is followed by a part entirely
devoted to discussing the effects of transmission switching.
Additionally, a sensitivity analysis is provided to illustrate
how different BoUs affect the planning decisions. A case is
also presented to discuss the impact of candidate line choice
on expansion planning decisions and costs. This section is
culminated by illustrating the performance of the algorithm
on the IEEE 118-bus system to demonstrate model scalability.
According to Table I, 7 periods are considered in the duration
curve, which correspond to different demands, DER energy
availability levels, and wildfire risk scores. To reflect the
varying nature of DER generation due to weather fluctuations,
the energy availability of DERs changes from year to year.

TABLE I
DEMAND, DER ENERGY AVAILABILITY, AND DURATION OF EACH PERIOD

Period Hour Season Demand Wind Solar
Insolation

Duration
(hours)

1 21 - 6 Summer low very low none 1,647
2 6 - 16 Summer high very low high 1,830
3 16 - 21 Summer very high very low medium 915
4 21 - 24 Winter low high none 546
5 24 - 6 Winter low medium none 1,092
6 6 - 16 Winter medium low medium 1,820
7 16 - 21 Winter high very low none 910

In practice, transmission line routing is a complicated
process and involves trade-offs among a myriad of
factors including environmental, political, and social
considerations, permitting, right of way acquisition, project
need, constructability, current and future identified land
use, project costs, and specific electric grid limitations and
opportunities [42]. The location and construction cost of
each new transmission line is dependent on its specific set of
conditions in real-world applications. However, without the
loss of generality and in order to showcase the performance
of our presented framework, the construction cost of new
lines is assumed to be $500,000 per mile and the modification
cost of existing lines is considered $250,000 per mile. In all
of our experiments, the parameter αψ is set to 0.5, meaning
the wildfire ignition risk is reduced by half once a line is
modified.

A. Demonstration of the Proposed Planning Problem

This part illustrates the results of applying the
wildfire-resilient planning algorithm to the 6-bus transmission
network displayed in Fig. 2. This system includes 3 thermal
units, 3 candidate DER installation sites, and 7 powerlines,
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where candidate lines are distinguished by dashed lines. In
experiments of this part, only L8 and L9 are included in
the set of candidate lines. In part E, a case is presented
that includes all lines L8, L9, L10, and L11 in the set of
candidate lines. The shaded areas in the network symbolize
different wind speeds throughout the network, with darker
shades representing regions prone to higher wind speeds. In
this case, the risk tolerance is set to 0.02 and the BoU is set
to 15%. It is also assumed that the network’s overall demand
grows by 2% each year.

Bus 1
Bus 2

Bus 3

Bus 6 Bus 5 Bus 4

Demand 3
Demand 2

Demand 1

PV 1

PV 3 PV 2

L7

L8

L9

L6

L2 L1

L3

L4

L5

Gen 3 Gen 2 Gen 1

L10 L11

Fig. 2. Schematic of the test 6-bus system

The base values for wildfire risk score of select lines and
periods along with the overall demand at select years in the
planning horizon for this network are shown in Table II. These
numbers represent only the predicted values and are subject
to change due to the realization of uncertainties. In the first
column of this table, the planning years are displayed, and the
second and third columns, respectively, show the wildfire risk
score associated with line ‘3’ of the network at periods 2 and
4 of the duration curve. The second period is associated with
low wind speeds, while period 4 represents high wind speed
conditions. The wildfire risk scores for line ‘7’ at the same
periods are displayed in the next two columns. As the risk
values suggest, since line ‘7’ is placed in a high-wind region,
its risk scores are considerably higher than those associated
with line ‘3’, which is located in a low-wind region. Finally,
the total demand in each year is shown in the last column of
this table.

TABLE II
BASE VALUES FOR RISK SCORE AND DEMAND IN THE 6-BUS NETWORK

Year ψL
l3,s2,y

ψL
l3,s4,y

ψL
l7,s2,y

ψL
l7,s4,y

Demand
(GWh)

1 0.0003 0.0028 0.0059 0.0592 3,652.0
4 0.0003 0.0030 0.0064 0.0639 3,875.6
7 0.0003 0.0026 0.0054 0.0510 4,112.9

10 0.0003 0.0027 0.0056 0.0558 4,364.5

According to the planning results, this network requires the
addition of two new lines (lines 8 and 9, in year 1), while
two other lines should be modified (lines 6 and 7, in year 1).
The results of applying the proposed wildfire-resilient planning
algorithm in this case are displayed in Fig. 3. In Fig. 3a, it
is noticed that up to year 6, all of the expected demand is
served. However, in the last 4 years, some energy has not
been served. The total amount of Expected Energy Not Served
(EENS) for this network is equal to 41.2 GWh throughout the
planning horizon. The overall demand in each year based on
the realized uncertainties is also shown in this figure. Due to

the uncertainties that are realized, the demand values do not
demonstrate a strictly growing pattern. The non-zero value of
EENS in year 7 in Fig. 3a is explained by the fluctuation
of DER energy availability (parameter pR) at each year. On
average, pR in year 7 is 15% less than that in year 8. That is
why it is observed that, unlike in year 7, the EENS in year 8
has reached zero, even though the demand value (pD) in this
year has grown and the overall installed DER capacity has
remained the same.

According to Fig. 3b, line de-energization enables the
network to reduce the wildfire risk. The dark-colored bars in
this figure show the network’s overall wildfire risk if all of the
lines remain connected. The light-colored bars represent the
wildfire risk under the proposed scheme. The reduction in the
wildfire risk under operating conditions is exclusively achieved
through optimal line de-energization as the wildfire risk is
determined by line energization status. Compared with the
system’s default configuration, where all of the lines remain
energized, the wildfire-resilient planning decreases the overall
wildfire risk by 77.5%. Compared with a scenario where no
expansion investments are made and the decision-maker relies
solely on PSPSs to limit wildfire risk, the overall wildfire
risk remains almost equal to that of the wildfire-resilient
expansion strategy. Compared with the PSPS scenario where
a considerable amount of 25.29% of the load is shed, the
proposed model will decrease load-shedding by more than
99%. Additionally, compared to the overall operating costs of
the system which are equal to $20,222.4M in the PSPS case,
the costs in the proposed expansion planning framework are
reduced by more than 91% .

Fig. 3. Expansion planning decisions in the 6-bus network

DER installation reduces the wildfire risk since they are
mainly placed at demand buses and do not enforce line
energization. It is noticed in Fig. 3c that DER units are the
main energy providers of this network. According to Fig. 3d,
899.6 MW of DER capacity is installed in the first year, which
is gradually increased to 1074.0 MW by the last planning year
to meet the growing demand. The lowest amount of DER
capacity is installed on Bus 2 (187.5 MW), which is not a
demand bus.

1) The importance of modeling uncertainties in the
expansion planning under wildfire risk: Proper modeling of
the uncertainties contributes significantly to the effectiveness
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of the proposed resilient expansion planning scheme. While
ignoring the uncertainties would decrease the expansion
planning cost, it would end up with a much higher operation
cost due to the significant increase in the Value of Lost Load
(VOLL). Table III summarizes the decisions for planning
with and without preparing for uncertainties in the planning
phase. It is observed that preparing for uncertainties incurs
$764.9M higher planning costs in the construction of new
lines, modification of the existing lines, and installation of
DER units compared to the scenario where the planner is
not ready for uncertain events. However, the realization of
uncertainties leads to a $1,884.8M increase in system costs
in the latter case, mainly due to the considerable difference
of $2,448.3M in VOLL. In the former case, only 0.1% of the
load is missed, while in the latter case, up to 2.97% of demand
is shed. In our experiments, κD is considered equal to 2,000
$/MWh.

TABLE III
EFFECT OF UNCERTAINTIES IN PLANNING DECISIONS AND COSTS

With modeling
uncertainties

Without modeling
uncertainties

Number of new lines 2 1
Number of modified lines 2 1

Installed DER capacity (GW) 1,074.0 524.0
Dispatch of DER units (TWh) 29.4 16.8

Dispatch of Thermal units (TWh) 13.2 24.5
Wildfire risk 0.187 0.196

Load shedding (%) 0.10 2.97
VOLL ($M) 82.5 2,530.8

Planning costs ($M) 1,442.0 667.1
Overall system costs ($M) 1,771.3 3,656.1

2) The impact of considering wildfire risk levels in the
expansion planning problem: While a high level of wildfire
risk could result in disastrous damages with costs beyond
limits, modeling the risk within the expansion planning
problem will significantly reduce it with a relatively small
investment. Here, another scenario is investigated where the
decision-maker does not pay attention to wildfire risk during
the planning stage. This scenario could be modeled by
assigning a high value to Υ in the constraint (1m) of the
proposed expansion planning model. Table IV displays the
results of two approaches where risk tolerance is limited and
is not. The energized hours row denotes the percentage of the
hours throughout the planning horizon that all of the lines have
been switched on. Comparing the expansion planning results
between cases where wildfire risk is limited and not limited,
the overall system operation costs are only $82M higher in the
former case. This is mainly because, in the latter case, no lines
are modified and a smaller DER capacity is installed. However,
the overall wildfire risk in the latter case is almost three
times that in the former case. This observation suggests that
with relatively small investments (4.9%) and careful operation
(reflected by energized hours row), this network could achieve
a substantially higher degree of resilience in operation against
the risk of wildfire.

TABLE IV
EFFECT OF RISK TOLERANCE IN PLANNING DECISIONS AND COSTS

With limiting
wildfire risk

Without limiting
wildfire risk

Number of new lines 2 2
Number of modified lines 2 0

Installed DER capacity 1,074.0 1,047.9
Energized hours (%) 52.5 62.3

Wildfire risk 0.187 0.546
Load shedding (%) 0.10 0.09

Overall system costs ($M) 1,771.3 1,689.3

B. Exploring the Planner’s Decision-Making Process and Risk
Burden

A key parameter of Alg. 1 is the value of Υ, which
essentially represents the amount of risk the planner is
willing to take. A ‘risk-averse’ planner would opt for
exceedingly small risk tolerance values, while a ‘risk-seeker’
planner wants to avoid proactive line de-energization and
serve more demand with tolerating riskier situations. The
latter behavior requires minimal investment costs and results
in negligible load shedding, whereas the former behavior
entails higher investments and considerable shut-off periods.
Several other factors, including but not limited to network
characteristics (size, population, infrastructure, instruments),
policies, regional characteristics (climate, vegetation, historical
wildfires, wildfire spread model), decision-maker’s expertise,
and risk-taking inclination also impact the choice of Υ. Here,
several scenarios with different levels of Υ are simulated to
investigate the impact of risk tolerance on the wildfire-resilient
planning problem. Since the choice of Υ is somewhat a
subjective matter, we have presented results for planners with
different risk-taking inclinations. The system planner may
consider various value for their risk and assess based on the
balance between VOLL and network expansion cost.

It is noticed that the choice of wildfire risk tolerance heavily
affects the network’s planning costs. According to the results
displayed in Table V, generally with lower tolerance levels,
more lines are required to be modified and higher DER
capacity is installed. Since the wildfire risk of new lines is
zero (it is considered that the new lines are underground),
the addition of new lines does not increase the wildfire
risk. Additionally, new line construction could allow for the
switching off of some of the existing transmission lines,
which consequently reduces the wildfire risk. With lower
risk tolerance levels, more lines are generally modified. An
exception is the last instance (Υ = 0.005) in which, by
reducing the wildfire risk tolerance level, the number of
modified lines is reduced. It is noticed that in this instance,
the amount of installed DER capacity has increased compared
to its previous instance (Υ = 0.010). Since DERs installed in
these two instances are strictly located at the demand buses, the
addition of more DER capacity translates into less energization
of lines, which inhibits the wildfire ignition risk. It is noticed
that planners are categorized into three groups based on their
inclination to take risks. The authors have grouped the planners
based on the percentage of lost load, where this value is less
than 0.1% for a risk-seeker planner, higher than 1% for a
risk-averse planner, and anything in between for a risk-neutral
planner.
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TABLE V
PLANNING DECISIONS IN CASE OF RISK TOLERANCE ANALYSIS

Risk-taking
inclination Υ

Number of
new lines

Number of
modified lines

Installed
DER (MW)

Overall
costs ($M)

Risk-seeker 0.080 2 0 1090 1,759.7
Risk-neutral 0.020 2 2 1,073 1,771.3
Risk-averse 0.010 2 6 1,144 3,270.1
Risk-averse 0.005 2 4 1,248 8,303.8

The network’s overall wildfire risk can be managed through
higher investments. However, this is not always the case, and
to match lower tolerance levels, some parts of the network
must be de-energized. The cost analysis results displayed
in Fig. 4 suggests that with the reduction in risk tolerance,
the overall system costs increase mostly due to the increase
in VOLL. It is noticed that with lower degrees of risk
tolerance, the overall planning costs of the system (costs of
new line construction, line modification, DER installation, and
generation of thermal units) do not experience a considerable
increase (from $1,663.9M in the first instance to $1,905.3M
in the last instance). This observation suggests that expansion
planning investments are not enough to obtain lower risk
tolerance levels. It is observed that for risk-averse planners,
VOLL has a substantial share in the overall system costs.
After a certain point, the system decision-maker should start
shutting off power to the consumers to match the reduced
risk tolerance. The dashed line (right axis) in Fig. 4 displays
the reduction in the overall system wildfire risk score in
percentage for each tolerance level. This value is obtained by
comparing the actual wildfire risk of the system with the total
wildfire risk if all lines are switched on. It is noticed that in the
case where risk tolerance is 0.08, the network’s wildfire risk
is reduced by 30.9%, whereas in the case where only 0.005
wildfire risk is tolerated, the overall risk is reduced by 97.2%.

Fig. 4. Network cost and risk reduction in case of risk tolerance analysis

To match the decreasing risk tolerance value, fewer lines
are being energized and more load is being shed. According
to the analysis results displayed in Fig. 5, it is observed that in
the case where risk tolerance equals 0.08, 63.1% of the lines
are energized at all times. It is noticed if the risk tolerance is
reduced to 0.005, the hours lines are energized are almost
halved (32.2%). This reduction is mainly because network
expansion decisions are limited in their ability to maintain
a lower risk level. The right axis shows the percentage of load
shedding in each instance. It is noticed that the reduction in

risk tolerance comes at the price of higher EENS. The load
shedding percentage increases from less than 0.1% in the first
instance to a considerable amount of 7.5% in the last instance.

Fig. 5. Load shedding and line energization in case of risk tolerance analysis

C. The Side Benefits of Transmission Switching

In this part, it is illustrated how transmission switching is
beneficial to wildfire-resilient expansion planning by reducing
wildfire risk and EENS. In the previous case, it was noticed in
Fig. 5 that the percentage of energized lines decreases with the
reduction in risk tolerance levels. According to Eqs. (1l) and
(1m), risk tolerance is calculated based on energized lines.
So it is only natural that in cases where line addition or
modification is not enough to reduce the network’s overall
risk, fewer lines become energized. This argument suggests
that if the overall risk of the network when all of the lines are
switched on is less than the wildfire tolerance level, no more
line de-energization is necessary. For example, it was noticed
in Table IV that even when the tolerance limit is not enforced,
the lines are de-energized 37.8% of the time. This observation
suggests that line switching is taking place for a reason other
than wildfire risk reduction.

In this part, the effects of transmission switching on the
operation of the 6-bus network presented in Case A are
investigated. Two cases are considered: 1- With switching, in
which line switching decisions are allowed and determined by
the optimization problem. 2- Without switching, in which all of
the lines are forced to stay energized at all periods. The results
of these two cases are compared against each other in Table
VI. The second and the third columns in Table VI respectively
correspond with the case where lines are able to be switched
on/off (with switching) and the case where lines are forcefully
switched on (without switching). In these experiments, Φ is
set to 15% while Υ is considered equal to 0.08.

TABLE VI
RESULTS OF TRANSMISSION SWITCHING ANALYSIS

Case With switching Without switching
Number of new lines 2 2

Number of modified lines 0 4
Installed DER capacity (MW) 1,090.0 1,290.3
Dispatch of DER units (TWh) 30.5 30.6

EENS (GWh) 47.9 48.9
Energized hours (%) 63.1 100

Overall system costs ($M) 1,759.7 2,033.1
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It is noticed that transmission switching reduces the
network’s overall costs. This is mainly due to the requirement
for modification of lines and installation of larger DER
capacity in the case without switching. Additionally, it is
observed that in the case with transmission switching, the
percentage of hours lines are energized is reduced to 63.1%
which decreases the overall wildfire risk.

Transmission switching takes place in a way that limits
congestion for each period. The on/off switching decisions
at each duration result in different network configurations and
dispatch. The configuration of the 6-bus network during period
3 for cases with switching and without switching is shown in
Fig. 6, where dispatch values for the latter case are displayed
inside brackets. According to these results, it is only during
period 3 (which corresponds with the peak demand in the load
duration curve) that the system is not able to meet all of the
demand. In the case where switching is allowed, lines 2 and
6 are switched off to facilitate load delivery. As a result, the
served demand in the case with switching is 16.6 MW more
than that of the case without switching. In the case of without
switching, line 7 reaches its maximum power flow limit and
is distinguished by its red color.

L1

L9

L7

L3

L5

D1D2D3

DER 3 

G1G2 

G3 

DER 1

DER 2 

L2

L6

Fig. 6. Comparison of network configuration in two cases during period 6 at
year 10

It should be noted that in current real-world PSPS practices,
sectionalizing high-risk areas from the rest of the network is
an inefficient process. The boundary of the regions that lose
service during PSPS events is determined by the availability
of proper switching devices. That is why Californian utilities
such as San Diego Gas & Electric have intensively engaged
in sectionalizing enhancement programs by installing new
isolation switches [17].

D. Implications of Uncertainties on Expansion Planning
Decisions

In this case, various scenarios for the wildfire-resilient
planning of the 6-bus network are presented to investigate
the impact of uncertainties on expansion planning decisions.
Another control parameter in Algorithm 1 is the value of Φ.
To explore the impacts of this choice, several simulations
were performed with different BoU levels. Similar to the
choice of risk tolerance, the system planner can choose the
BoU based on its preferences or the network’s conditions.
According to the expansion planning results displayed in Table
VII, it is observed that higher uncertainty levels require more

investments in new line construction, line modification, and
DER installations. In these simulations, the risk tolerance
value (Υ) is set to 0.02 and the 6-bus network presented in
Case A is considered.

TABLE VII
PLANNING DECISIONS IN CASE OF BOU ANALYSIS

Φ (%) Number of
new lines

Number of
modified lines

Installed DER
capacity (MW)

Overall planning
costs ($M)

0 1 1 524.0 1,123.8
5 1 1 895.0 1,537.4

10 2 1 989.7 1,646.2
15 2 2 1074.0 1,771.3
20 2 2 1156.3 1,862.0
25 2 2 1152.3 1,883.0

By increasing the BoU, the output of DERs is more likely to
be reduced. That is why higher BoU levels require increased
DER capacity to hedge against uncertainties. According to the
cost breakdown results displayed in Fig. 7, the installation
cost of DER units accounts for the largest share of the
overall system costs. It is noticed that with an increase in
the uncertainty level, the cost of expansion, generation, and
VOLL do not experience considerable growth.

Fig. 7. Breakdown of system costs for BoU analysis

It is also observed that demand uncertainties are more likely
to lead to undesirable scenarios. Fig. 8 displays how many
instances of realized uncertainties are allocated to demand
and DERs at each instance. It is observed that worst-case
realizations correspond with the larger portion of uncertainties
happening in demand. As a result, the overall system demand
is increasing due to the growth in uncertainty levels. However,
it is also observed that at Φ = 25%, the share of demand
and DERs in realized uncertainties is almost equal. This
observation suggests that the drop in DER outputs could
aggravate system operations as much as an increase in demand.
The right axis of Fig. 8 shows the total amount of energy
dispatched for different BoU levels. As expected, it is noticed
that a higher BoU requires increased dispatched energy.

E. A scenario with higher number of potential new lines

A larger set of candidate new lines results in lower
expansion costs. In the experiments performed on the 6-bus
network, it was assumed that the set of new lines consists
of only two lines, i.e., lines 8 and 9. Here, another scenario
is explored where the set of new lines is increased to four
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Fig. 8. Uncertainties realized and total dispatch of units for BoU analysis

lines. It is assumed that two other potential new lines are
added to set N , with candidate lines 10 and 11 connecting
bus pairs 2-6 and 1-5, respectively. The results of applying the
wildfire-resilient planning strategy to the same 6-bus network
with different sets of candidate new lines suggest the choice
of candidate line heavily impacts the expansion decisions and
costs. According to Table VIII, in the case where 2 candidate
lines are assigned, some lines should be modified with lower
risk tolerance levels, whereas in the case with 4 candidate
lines, no lines are modified. In the former case, lines 8 and 9
are constructed in all instances, while in the latter case, lines
8 and 10 are added. It is noticed that in the last instance,
the larger set of candidate lines leads to a 48% reduction
in planning costs (which is interestingly achieved only by
building line 10 instead of line 9). However, transmission line
routing is a challenging issue that limits the practicality of this
approach.

TABLE VIII
COMPARISON OF EXPANSION PLANNING DECISIONS AND COSTS FOR

DIFFERENT SETS OF CANDIDATE LINES

N = {L8, L9} N = {L8, L9, L10, L11}
Υ

Number of
new lines

Number of
modified lines Cost ($M) Number of

new lines
Number of

modified lines Cost ($M)

0.040 2 (L8, L9) 0 1,733.9 2 (L8, L10) 0 1,621.9
0.020 2 (L8, L9) 2 1,771.3 2 (L8, L10) 0 1,626.2
0.010 2 (L8, L9) 6 3,270.1 2 (L8, L10) 0 1,686.0

F. IEEE 118-Bus Power System

In this part, a sub-region in the IEEE 118-bus network
including 43 existing lines and 14 candidate new lines
is considered. It is assumed that all of the existing lines
considered in the wildfire-resilient expansion planning are
equipped with switches and can be modified. The results
suggest that similar to previous cases, the expansion planning
costs are dominated by DER installation expenses, while with
relatively low investment in the addition and modification of
lines, the overall network wildfire risk is reduced by 65%. The
expansion decisions obtained by the proposed wildfire-resilient
algorithm are reported in Table IX. It is noticed that the
thermal units account for only one-third of the total dispatched
energy, while the rest of the demand is served by DER units.
The percentage of load shedding is minimal in this case, which
means achieving a risk tolerance level of 0.1 is not challenging
for this system.

TABLE IX
EXPANSION PLANNING RESULTS IN 118-BUS CASE (Υ = 0.1, Φ = 10 %)

Number of new lines 6
Number of modified lines 1

Installed DER capacity (MW) 3,856.1
Dispatch of DER units (TWh) 105.6

Dispatch of thermal units (TWh) 51.3
DER installation cost ($M) 4,674.5

Generation cost ($M) 1,503.9
Overall system costs ($M) 6,340.8

Load shedding (%) 0.04
Wildfire risk reduction 64.9 %

V. CONCLUSIONS

In this paper, an expansion planning model is presented
to limit the wildfire ignition risk of electricity networks and
model the long-term impacts of public safety power shut-off
events. The results illustrate how decision-makers can balance
between shutting off power to customers and grid expansion
or hardening measures. The results demonstrate that DER
installation is the best approach to meet demand growth
and inhibit wildfire risk in the long run. Our simulations
suggest that transmission line de-energization switching plays
a major role in keeping the overall wildfire risk of the
network below the tolerance level and facilitating demand
serving. Lowering wildfire risk tolerance and raising the level
of uncertainty will require more investment costs. However,
new line construction, line modification, and DER installations
can not always guarantee network operation within desired
wildfire-safe risk levels. It is shown that, at some point,
de-energizing lines and shutting off customers is inevitable
to maintain a wildfire-resilient operation.
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