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Abstract—This paper presented a convex relaxation approach
for the optimal power flow problem. The proposed approach
leveraged the second-order cone programming (SOCP) relaxation
to tackle the non-convexity within the feasible region of the power
flow problem. Recovering an optimal solution that is feasible for
the original non-convex problem is challenging for networks with
cycles. The main challenge is the lack of convex constraints to
present the voltage angles within a cycle. This paper aims to fill
this gap by presenting a convex constraint enforcing the sum of
voltage angles over a cycle to be zero. To this end, the higher-
order moment relaxation matrix associated with each maximal
clique of the network is formed. The elements of this matrix are
utilized to form a convex constraint enforcing the voltage angle
summation over each cycle. To keep the computation burden
of leveraging the higher-order moment relaxation low, a set of
second-order cone constraints are applied to relate the elements
of the higher-order moment relaxation matrix. The case study
presented the merit of this work by comparing the solution
procured by the introduced approach with other relaxation
schemes.

Index Terms—optimal power flow, convex relaxation, angle
recovery, second-order cone programming, nonlinear program-
ming.

NOMENCLATURE

Sets
G Set of generation units
Gi Set of all generation units connected to bus i
L Set of distribution lines
N Set of all buses
δi Set of all buses connected to bus i

Variables
Vi Voltage phasor of bus i
ei Real part of voltage phasor of bus i
fi Imaginary part of voltage phasor of bus i
pg , qg Real and reactive power generation output of

unit g
pdi , qdi Real and reactive power demand at bus i
θi Voltage angle of bus i
c, s Lifting variable terms for SOCP relaxation
pij , qij Real and reactive power flow from bus i to

bus j
θij The difference between voltage phase angle of

bus i and bus j
γ(.) Lifting operator for the moment relaxation
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Parameters
Cg Generation cost function of generator g
G(.) Elements of the conductance matrix
B(.) Elements of the susceptance matrix
V mini Minimum voltage magnitude at bus i
V maxi Maximum voltage magnitude at bus i
pming , pmaxg Real power generation limits of unit g
qming , qmaxg Reactive power generation limits of unit g
Smaxij Maximum apparent power of the branch con-

necting buses i and j

I. INTRODUCTION

OPTIMAL power flow (OPF) is the underlying problem
for many power system operational planning problems

that its AC form is introduced in [1]. ACOPF is a non-convex
optimization problem that is hard to solve in polynomial time
[2], [3]. The traditional solution methods (e.g. interior-point
and gradient-based) may converge to local optimal solutions
[4]. Moreover, due to the non-convexity of the problem, it may
fail to converge for some systems depending on the initial
guess [5]. To remedy this issue, a set of convex relaxation
approaches are presented to find the optimal solution or at
least its lower bound. Semi-definite programming (SDP) [6],
second-order cone programming (SOCP) [7], and quadratic
convex (QC) [8] relaxations are among those relaxation ap-
proaches. Although these convex relaxation approaches can
provide a polynomial-time algorithm to solve the problem,
they are suffering from two major issues. The first issue is
that the solution to the relaxed problem might not be feasible
for the original non-convex problem [9], [10]. To improve
the exactness of these convex relaxation approaches, bound
tightening methods are presented in the literature. Several
tightening methods are presented in [11] for QC relaxation
problem formulation. The McCormick envelops are leveraged
in [12] to strengthen the SOCP relaxation problem. Another
route to overcome the tightness issue is to employ moment-
based approaches which guarantee that when the order of the
moment relaxation goes to infinity, the relaxation is exact [13],
[14]. However, the computation burden of employing higher
orders of moment relaxation is very large that makes it an
impractical problem to solve. This raises the second drawback
of convex relaxation approaches which is the lack of reliable
and efficient solvers specifically for large-scale SDP problems.
Employing the sparse form of the moment relaxation matrix
could mitigate the computation burden. According to the PSD
matrix completion theorem [15], a matrix is PSD if and only
if each submatrix, formed based on the maximal cliques of
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the associated graph of the network, is also PSD. Although
leveraging sparsity leads to a decrease in the computation
burden of higher-order moment relaxation approaches for the
medium-size network (e.g. up to 300 bus), it is still hardly
practical for larger size networks [16]. Sparsity enables the
solution of the first-order moment relaxation for systems
with thousands of buses [17] and the second-order moment
relaxation for systems with approximately forty buses [18].
One remedy to the issue is presented in [19], the first-order
relaxation is formulated with SDP constraints and the higher-
order relaxations are presented by SOCP constraints. Another
approach to overcome this challenge is to employ cycle-based
SDP relaxation methods as suggested in [20] which led to a
reduction in the computation complexity of SDP relaxation
problems compared to clique-based approaches. The focus of
this paper is to leverage cycle constraint to present a convex
relaxation approach with an enhanced tightness and moderate
computation burden.

On one hand, the ACOPF solution procured by SDP relax-
ation for meshed networks is tighter than the one procured by
SOCP and QC relaxations, but for the radial networks, SOCP
and SDP relaxation methods are equivalent [21], [22]. On the
other hand, solving the ACOPF problem using SOCP and
QC relaxations is more efficient than using SDP relaxation.
There is a research trend to present a set of valid constraints
to the SOCP and QC relaxations of the ACOPF problem to
enhance its tightness and reach a tightness comparable to
SDP relaxation. Angle recovery is the main challenge for
the SOCP-based ACOPF problem. A set of strong SOCP
and SDP relaxations are presented in [23], [24], and [25]
to enforce the angle over a cycles within power network. In
[26], the semi-definiteness constraint is relaxed by the second-
order cone constraint for each principal minor. The SOCP
relaxation is then further tightened by polynomial cuts. The
procured problem is nonlinear but convex and the procured
solution is a globally optimal solution with a much lighter
computation burden compared to utilization of SDP solvers.
However, the procured relaxation is at most as tight as the SDP
relaxation and could still render solutions with a rank higher
than one. In [27], it is discussed that the problem reformulation
can uncover a hidden rank-1 solution. In [28], it is shown
that rank constraints can be reformulated by both principal
and non-principal of 2× 2 minors of the Hermitian matrix
associated with the lifting variables of the ACOPF problem
discussed in [29]. It is argued that it is equivalent to enforcing
cycle constraints of SOCP relaxation of the ACOPF problem.
They proposed strong cutting planes, convex envelopes, and
bound tightening techniques to strengthen the resulting SOCP
relaxations. The approach presented here aims to explore
another path to tighten the SOCP relaxation by introducing
a set of valid cuts enforcing the cycle constraints.

The main contributions of this paper are listed as follows.
• A convex relaxation approach is presented to enforce non-

convex cycle constraints which are not presented in the
SOCP relaxation of the AC-OPF problem. It is shown that
when the presented relaxation approach is employed, the
summation of voltage angle differences over the cycles
of a network is much smaller than that of employing the

SOCP relaxation method.
• Leveraging the chordal extension of the graph associated

with the network to build up cycles with 3 vertices that
are suitable for formulating the cycle constraints using the
terms within the second order-moment relaxation matrix.

• A second-order cone relaxation is presented for the
second-order moment relaxation matrix which mitigate
the computation burden of utilizing the lifting terms of the
second-order moment relaxation matrix in the presented
cycle constraint relaxation method.

II. PROBLEM FORMULATION
The problem formulation for the ACOPF problem in rectan-

gular form is presented in (1). The total cost of generation is
minimized as shown in (1a). The real and reactive power flow
sending from bus i to bus j are given in (1b) and (1c), respec-
tively. The nodal balance equations for the real and reactive
power at each bus are shown in (1d) and (1e), respectively.
The upper limit and lower limit of voltage magnitude at each
bus are given in (1f), where the voltage limits are presented
in their square form.. The physical limits of real and reactive
power generation for each generation unit are presented in
(1g) and (1h), respectively. The thermal limits of the apparent
power sending from bus i to bus j is shown in (1i).

min
∑
g∈G

Cg(pg) (1a)

s.t.{
pij = −Gij(e2i + f2i )+
Gij(eiej + fifj)−Bij(eifj − ejfi)

∀(i, j) ∈ L (1b){
qij = Bij(e

2
i + f2i )−

Bij(eiej + fifj)−Gij(eifj − ejfi)
∀(i, j) ∈ L (1c){ ∑

g∈Gi pg − p
d
i =

(Gii +
∑
j∈δi Gij)(e

2
i + f2i ) +

∑
j∈δi pij

∀i ∈ N (1d){ ∑
g∈Gi qg − q

d
i =

−(Bii +
∑
j∈δi Bij)(e

2
i + f2i ) +

∑
j∈δi qij

∀i ∈ N (1e)

(V mini )2 ≤ e2i + f2i ≤ (V maxi )2 ∀i ∈ N (1f)

pming ≤ pg ≤ pmaxg ∀g ∈ G (1g)

qming ≤ qg ≤ qmaxg ∀g ∈ G (1h)

0 ≤
√
p2ij + q2ij ≤ S

max
ij ∀(i, j) ∈ L (1i)

The problem formulation presented in (1) is a non-convex
problem. Solving this problem with iterative approaches may
fail to find an optimal solution. A solution method that aims
to leverage second-order cone programming relaxation with
an enhanced tightness by leveraging the cycle constraints is
presented in the next section of this paper.

III. SOLUTION METHODOLOGY
A. Overview

To find the solution to the problem presented in (1), a re-
laxation scheme is presented in this section. The problem that
is presented in (1) is an NP-hard problem. Nonlinear solution
methodologies cannot guarantee to find a solution in polyno-
mial time. First, the problem formulation is reformulated using
the SOCP relaxation technique. Although such relaxation
presents a computationally light solution method, it presents a
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zero relaxation gap only for radial networks. To obtain a zero-
gap solution for mesh networks, the voltage angles must be
precisely recovered. Thus, the next subsection presented a set
of cycle constraints to enforce proper voltage angles across
the network. However, the procured terms exhibit bilinear
terms of the SOCP relaxed terms which are further relaxed
using the second-order moment relaxation matrix associated
with the chordal extension of the network. Finally, in the next
subsection, a SOCP relaxation is presented for the procured
moment relaxation problem to facilitate rewriting the original
non-convex OPF problem formulated in (1) in a new convex
relaxation form denoted as cycle constraint relaxation. The
following subsections discuss the measure for the tightness of
the presented relaxation as well as an angle recovery scheme.

B. The Primary SOCP Relaxation

The rectangular formulation of the ACOPF problem pre-
sented in (1) is a non-convex quadratic optimization problem.
The source of non-convexity is the bi-linear terms in branch
flow equality constraints given in (1b) and (1c). A set of lifting
variables is introduced in (2) to relax the problem presented
in (1).

cii := e2i + f2i = V ∗i Vi (2a)
cij := eiej + fifj = Re{V ∗i Vj} (2b)
sij := eifj − fiej = Im{V ∗i Vj} (2c)

For any given angle difference of pair of buses, the trigonomet-
ric relationship given in (3a) holds. Once the equation given
in (3a) is multiplied by (|Vi| |Vj |)2, it is presented as given
in (3b). This equation is further presented in phasor form as
given in (3c). Applying the lifting terms introduced in (2),
the equation presented in (3c) is reformulated in the form
presented in (3d).

cos θij
2 + sin θij

2 = 1 (3a)

(|Vi| |Vj | cos θij)2 + (|Vi| |Vj | sin θij)2 = |Vi|2 |Vj |2 (3b)

(Re{V ∗i Vj})2 + (Im{V ∗i Vj})2 = (V ∗i Vi)(V
∗
j Vj) (3c)

c2ij + s2ij = ciicjj (3d)

The defined lifting terms in (2) are leveraged to reformulate
the original ACOPF problem given in (1) to the form presented
in (4). This relaxation is referred to as the SOCP relaxation
of the ACOPF problem as discussed in [23] and [29]. Here,
the objective function is the same as the one in the original
non-convex problem. The non-convex equality constraints
presented in (1b)-(1c) are represented in a conic relaxed form
as represented (4b)-(4c) using the lifting terms introduced in
(2). The voltage limits are presented in terms of the lifting
terms as given in (4f). The relationships between the lifting
terms of each pair of buses are given in (4g). The second-order
cone constraint given in (4h) presents the second-order cone
relaxation of the relationship between the lifting terms given
in (3d). The rest of the constraints in (4) are the same as those
presented in (1).

min
∑
g∈G

Cg(pg) (4a)

s.t.
pij = −Gijcii +Gijcij −Bijsij ∀(i, j) ∈ L (4b)
qij = Bijcii −Bijcij −Gijsij ∀(i, j) ∈ L (4c)∑
g∈Gi

pg − pdi = (Gii +
∑
j∈δi

Gij)cii +
∑
j∈δi

pij ∀i ∈ N (4d)

∑
g∈Gi

qg − qdi = −(Bii +
∑
j∈δi

Bij)cii +
∑
j∈δi

qij ∀i ∈ N (4e)

(V mini )2 ≤ cii ≤ (V maxi )2 ∀i ∈ N (4f)
cij = cji , sij = −sji ∀(i, j) ∈ L (4g)∥∥∥∥∥∥

2cij
2sij

cii − cjj

∥∥∥∥∥∥ ≤ cii + cjj ∀(i, j) ∈ L (4h)

(1g), (1h), (1i)

The presented SOCP relaxation formulation in (4) is exact
for radial networks, so the procured solution to the relaxed
problem is the same as the one procured by the original non-
convex problem and the voltage angles can be recovered with
any choice of a reference bus. However, this relaxation is
not exact for a general mesh network with multiple cycles.
The main issue with the relaxation presented in (4) is the
absence of constraints enforcing the voltage angles across the
network. In other words, recovering the voltage angles from
the presented relaxation is not straightforward. Unique angle
differences cannot be procured unless it is enforced in the
SOCP relaxation formulation. Therefore, the cycle constraint
presented in (5a) should be added to the SOCP problem
formulation to guarantee that the voltage angle difference of
buses in a cycle sums to zero. Thus, voltage angles may be
recovered by enforcing the non-convex constraint presented
in (5a), where the lifting terms cij and sij are utilized to
recover the difference in voltage angles of a pair of buses.
Adding the presented constraint in (5) will make the convex
relaxation problem presented in (4) non-convex. Thus, in the
next subsection, a set of valid constraints is presented to
preserve the relationship enforced in (5) and avoid a non-
convex problem formulation.

θij = θi − θj = atan2(sij , cij) (i, j) ∈ L (5a)

atan2(sij , cij) =



arctan(
sij
cij

) ; cij > 0

arctan(
sij
cij

) + π; sij ≥ 0, cij < 0

arctan(
sij
cij

)− π; sij < 0, cij < 0

+π
2 ; sij > 0, cij = 0
−π2 ; sij < 0, cij = 0
undefined ; sij = 0, cij = 0

(5b)

C. Non-Convex Cycle Constraints

This subsection aims to present a set of valid constraints to
be utilized in place of the non-convex angle constraint given
in (5). To this end, the three buses of an arbitrary cycle shown
in Fig. 1 are referred to as bus i, j, and k. The summation of
the voltage angle difference of the pair of buses within a cycle
is zero as shown in (6a). Applying the cos operator to both
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Fig. 1. An arbitrary cycle with three buses in a mesh network

sides of the equation presented in (6a) results in the equation
presented in (6b). The expanded form of the argument of the
cos function in (6b) is given in (6c), where the right-hand
side is 1 and the left-hand side is composed of four terms of
trigonometric multiplications which are non-convex.
θij + θjk + θki = 0 (6a)
cos (θij + θjk + θki) = cos (0) (6b)( cos θij cos θjk cos θki − sin θij sin θjk cos θki
− sin θij cos θjk sin θki − cos θij sin θjk sin θki

)
= 1 (6c)

The non-convex terms in the left-hand side of the (6c) are
undesirable. In (7), both side of the equation presented in (6c)
are multiplied by (|Vi| |Vj | |Vk|)2.


(|Vi| |Vj | cos θij)(|Vj | |Vk| cos θjk)(|Vk| |Vi| cos θki)
−(|Vi| |Vj | sin θij)(|Vj | |Vk| sin θjk)(|Vk| |Vi| cos θki)
−(|Vi| |Vj | sin θij)(|Vj | |Vk| cos θjk)(|Vk| |Vi| sin θki)
−(|Vi| |Vj | cos θij)(|Vj | |Vk| sin θjk)(|Vk| |Vi| sin θki)


= (|Vi| |Vi|)(|Vj | |Vj |)(|Vk| |Vk|) (7)

As the non-linear and non-convex terms presented in (7) are
not desirable, they can be represented in the form presented
in (8).

Re{V ∗i Vj}Re{V ∗j Vk}Re{V ∗k Vi})
−Im{V ∗i Vj}Im{V ∗j Vk}Re{V ∗k Vi}
−Im{V ∗i Vj}Re{V ∗j Vk}Im{V ∗k Vi}
−Re{V ∗i Vj}Im{V ∗j Vk}Im{V ∗k Vi}

 = V ∗i ViV
∗
j VjV

∗
k Vk

(8)

Applying the lifting terms, cii, cij , and sij introduced in
(2), equality given in (8) is represented as given in (9a). The
constraint presented in (9a) is further represented in a compact
form as given in (9b). Enforcing constraint given in (9b) will
ensure that the summation of angle differences of pair of buses
within a cycle is zero. However, this equation renders tri-linear
terms which are also non-convex and still undesirable.(cijcjkcki − sijsjkcki−

sijcjkski − cijsjkski

)
= ciicjjckk (9a)(cij(cjkcki − sjkski)−

sij(sjkcki + cjkski)

)
= ciicjjckk (9b)

The constraints procured in (9) are not desirable and are
not utilized in this work. A different take on the equation
presented in (6a) will pave the way to come up with some
desirable terms. In a cycle similar to the one in Fig.1 with
three buses, the voltage angle difference of a pair of buses
within a cycle is equal to the negative sum of the other

two pairs of buses: θij = −(θjk + θki). Applying the sin and
cos operator will lead to: sin θij = sin(−(θjk + θki)) and
cos θij = cos(−(θjk + θki)). Expanding the argument of the
trigonometric terms will result in the form presented in (10).
Similar to equations (7)-(8), multiplying the two trigonometric
equations by |Vi| |Vj | | |Vk|2 will lead to the form presented in
(11). Then, leveraging the lifting terms introduced in (2), the
phasor form presented in (11) is reformulated into the form
presented in (12). Here, the equations procured in (12) are
the equivalent of the one presented in (9). Although the terms
procured in (12) are bilinear, their level of non-convexity is
less complicated than the tri-linear terms presented in (9).{

sin θij = − sin θjk cos θki − cos θjk sin θki
cos θij = cos θjk cos θki − sin θjk sin θki

(10){
Im{(V ∗i Vj)(V ∗k Vk)} = −Im{(V ∗j Vk)(V ∗k Vi)}
Re{(V ∗i Vj)(V ∗k Vk)} = Re{(V ∗j Vk)(V ∗k Vi)}

(11){
sijckk = −cjkski − sjkcki
cijckk = cjkcki − sjkski

(12)

A unique solution can be procured using (5a) if summations
of voltage angle differences over cycles are zero and (12)
is enforcing this condition. Thus, satisfying the constraints
presented in (12) is equivalent to satisfying the non-convex
constraint presented in (5a). However, the procured constraints
are still non-convex. While McCormick-based LP Relaxation
and arctangent envelopes are employed in [23], in the next
subsection, a convex relaxation approach based on a higher-
order SOCP relaxation of the bi-linear terms of (12) is
presented.

D. Cycle Constraint Convex Relaxation

To present the non-convex constraints given in (12) in a
convex form, its phasor form presented in (11) is taken into
account. A new set of lifting terms should be introduced
to remedy the non-convexity of the bi-linear terms in (12).
The new set of lifting terms should be defined over the
multiplication of voltage phasors within a cycle. To this end,
the sparse second-order moment relaxation matrix associated
with each maximal clique of the chordal extended graph of
the network is introduced. Reviewing several graph theoretic
definitions is necessary to proceed with the discussion. A
clique is a subset of the graph vertices for which each vertex
in the clique is connected to all other vertices in the clique.
A maximal clique is a clique that is not a proper subset of
another clique. A graph is chordal if each cycle of length four
or more vertices has a chord, which is an edge connecting two
vertices that are not adjacent in the cycle.

The chordal extension of the graph associated with the 5-
bus network is presented in Fig. 2 to enable the formation
of the second-order moment relaxation matrix of the terms
employed in the SOCP relaxation method. In Fig. 2, the chord
2-4 is added to the graph of the 5-bus network to obtain the
chordal extended graph of the 5-bus network. This will also
make the size of all cycles equal to 3, which is suitable for the
convex relaxation of the cycle constraints. Once the chordal
extension is applied, the maximal cliques of this network are
(1,5,4), (1,2,4), and (2,3,4). Here, the size of a cycle and clique
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Fig. 2. Chordal extended graph of a 5-bus network

is referred to the total number of its vertices. Therefore, the
extended graph of power network contains cycles with three
buses as given in Fig. 1.

1) First-Order Moment Formulation: To enable the defini-
tion of the moment matrix in its sparse form, the graph of
the network should be chordal [17]. The chordal extension
will add a chord to any cycle of length more than 3, so the
chordal extended graph will only have cycles with three buses
as assumed in the previous subsection. However, these cycles
with 3 pairs of buses may include those virtually added chords.
Once the chordal extension is done, the maximal cliques of
the graph associated with the chordal extended network are
procured.

Once the maximal cliques of the chordal extended graph of
the network are established, the first-order moment relaxation
matrix associated with each maximal clique can be formulated
using the basis given in (13) and its conjugate.

vc =
[
Vi Vj ... V|c|

]
(13)

Wα
c = v∗cvc =



V ∗i Vi V ∗i Vj ... V ∗i V|c|
V ∗j Vi V ∗j Vj ... V ∗j V|c|
. . .
. . .
. . .

V ∗|c|Vi V ∗|c|Vj ... V ∗|c|V|c|

 (14a)

V ∗i Vj
lifting−−−−→ γ(V ∗i Vj) ≡ γV ∗i Vj

(14b)

The relationship between the moment relaxation matrix and its
basis is presented in (14a), using the basis presented in (13)
and its conjugate. The lifting operator is illustrated in (14b) to
relax the bilinear elements of the matrix presented in (14a).
Note that for convenience, the lifting operator is rewritten as
lifting variable γ with the associated lifted bilinear term as its
subscript. Therefore, by replacing the bilinear elements of the
matrix given in (14a) with their related lifting variables, the
first-order moment relaxation matrix given in (15) is obtained.
However, the rank-1 constraint given in (14a) is non-convex.
Furthermore, the quadrilateral terms in (11) are not presented
in the first-order moment relaxation given in (15). Thus, the
second-order moment relaxation matrix is formed in the next
part to procure those terms.

Wc =



γV ∗i Vi
γV ∗i Vj

... γV ∗i V|c|
γV ∗j Vi

γV ∗j Vj
... γV ∗j V|c|

. . .

. . .

. . .
γV ∗|c|Vi

γV ∗|c|Vj
... γV ∗|c|V|c|

 (15)

The relationship between the lifting terms introduced for the
SOCP relaxation problem formulation in (2) and the lifting
variables given in (14b) is presented in (16).

cii = γV ∗i Vi (16a)

cij = Re{γV ∗i Vj
} (16b)

sij = Im{γV ∗i Vj
} (16c)

2) Second-Order Moment Relaxation Formulation: The
equivalent cycle constraints presented in (11) contain quadri-
lateral voltage phasor terms. To obtain the relaxed form
of these terms, the second-order moment relaxation matrix
definition is employed. The basis of the second-order moment
relaxation matrix is given in (17) which includes the elements
of the first-order moment relaxation matrix given in (15).

v′c =
[
vc γV ∗i Vi

γV ∗i Vj
... γV ∗|c|V|c−1| γV ∗|c|V|c|

]
(17)

The non-convex rank-1 constraint of the second-order moment
relaxation matrix of each maximal clique is given in (18a).

Wα′
c = v′c

∗v′c (18a)

V ∗i VkV
∗
k Vj

lifting−−−−→ γ(V ∗i VkV
∗
k Vj) ≡ γV ∗i VkV ∗k Vj

(18b)

Similar to the first order moment relaxation matrix presented
in (15), the second-order moment relaxation is presented using
the lifting terms. A set of lifting variables is introduced
in (18b) to relax the bilinear elements of the matrix Wα′

c

presented in (18a). By relaxing the elements of the matrix
Wα′

c presented in (18a) with the set of lifting variables
introduced in (18b) the second-order moment relaxation matrix
W ′c is rendered as shown in (19).
W ′c =

γ|Vi|2 ... γVi
∗V|c| γVi

∗|Vi|2 ... γ
Vi
∗|V|c||2

. . . .

. . . .

. . . .
γV|c|∗Vi

... γ|V|c||2 γV|c|∗|Vi|2 ... γ
V|c|
∗|V|c||2

γ|Vi|2Vi
... γ|Vi|2V|c| γ|Vi|4 ... γ|Vi|2|V|c||2

. . . .

. . . .

. . . .
γ|V|c||2Vi

... γ|V|c||2V|c| γ|V|c||2|Vi|2
... γ|V|c||4


(19)

The second-order elements of the second-order moment
relaxation matrix W ′c are the relaxed form of the quadrilateral
terms, so the conic constraint (3d) and the cycle constraint
(11) can be represented in form given in (20). Here, the
equation (20a) holds for each pair of buses in the chordal
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extended network. The relaxed form of the cycle constraint
presented in (20b) holds for each cycle of three buses within
the chordal extended network. The two sides of the relaxed
cycle constraint presented in (20b) are explicitly related by
enforcing this constraint. However, as the rank-1 constraint
presented in (18a) is non-convex, the lifting terms inside the
moment relaxation matrix W ′c should be presented in a conic
relaxation form. A computationally efficient conic relaxation
is presented in the next subsection.

Re{γ(V ∗i Vj)2}+ Im{γ(V ∗i Vj)2} = γ(V ∗i Vi)(V ∗j Vj) (20a){
Re{γ(V ∗i Vj)(V ∗k Vk)} = Re{γ(V ∗j Vk)(V ∗k Vi)}
Im{γ(V ∗i Vj)(V ∗k Vk)} = −Im{γ(V ∗j Vk)(V ∗k Vi)}

(20b)

E. The Proposed Conic Relaxation

The moment relaxation matrix W ′c is associated with each
maximal clique of the network. Enforcing the elements of the
second-order moment relaxation matrix in a semi-definite cone
has computation complexity of O(2(|c|(1+ |c|/2))3) which is
proportional to the largest clique within the network. Thus, a
computationally less demanding second-order cone is utilized
here with the computational complexity of O(2)3. The second-
order cone constraints are presented for each 2× 2 principal
minors of the second-order moment relaxation matrix as given
in (21), where W ′c(i, j) is the element ith row and jth column
of the second-order moment relaxation matrix. Knowing the
relationship between SOCP relaxation lifting variables and
first-order moment relaxation lifting variables in (16), one can
rewrite the SOC constraint given in (4f) in the form presented
in (21a). The relationship between lifting terms presented in
(4g) is also reformulated as (21b) and (21c).∥∥∥∥∥∥

2Re{W ′c(i, j)}
2Im{W ′c(i, j)}

W ′c(i, i)−W ′c(j, j)

∥∥∥∥∥∥ ≤W ′c(i, i) +W ′c(j, j) (21a)

Re{W ′c(i, j)} = Re{W ′c(j, i)} (21b)
Im{W ′c(i, j)} = −Im{W ′c(j, i)} (21c)

Similarly, constraints (4b) - (4f) are represented in the form
given in (22).{

pij = −GijRe{γV ∗i Vi}
+GijRe{γV ∗i Vj

} −BijIm{γV ∗i Vj
} ∀(i, j) ∈ L (22a){

qij = BijRe{γV ∗i Vi}
−BijRe{γV ∗i Vj

} −GijIm{γV ∗i Vj
} ∀(i, j) ∈ L (22b){∑

g∈Gi pg − p
d
i =

∑
j∈δi pij

+(Gii +
∑
j∈δi Gij)Re{γV ∗i Vi

} ∀i ∈ N (22c){∑
g∈Gi qg − q

d
i =

∑
j∈δi qij

−(Bii +
∑
j∈δi Bij)Re{γV ∗i Vi

} ∀i ∈ N (22d)

(V mini )2 ≤ γV ∗i Vi
≤ (V maxi )2 ∀i ∈ N (22e)

Once all the SOCP relaxation lifting variables given in (2)
replaced by the lifting variables introduced in (14b), the cycle
constraint relaxation (CCR) of the AC-OPF problem given in
(1) is presented in (23).

min
∑
g∈G

Cg(Pg) (23)

s.t. (1g)− (1i), (20), (21), (22)

Note that the optimization variables of the CCR relaxation
problem presented in (23) are the elements of the W ′c matrix
introduced in (19). The elements of sparse second-order
moment relaxation matrix are employed to enforce cycle
constraints. This adds a set of valid constraints representing
the cycle constraints which will present additional cuts to
the feasible region of the relaxation problem to achieve an
optimal solution that is tighter than the one procured by the
SOCP relaxation problem. However, the procured solution
by the CCR problem formulation is not as tight as utilizing
the semi-definite relaxation of the second-order moment
relaxation matrix.
F. Checking The Relaxation Tightness

One measure to check the gap between the proposed method
and the original problem is the difference of objective values
divided by the objective value of the original problem. In [30],
the difference between the objective values of each method
and the original problem divided by the objective value of
the original problem is considered a gap of the proposed
method. Another approach leverages the ratio of the largest
and the second largest eigenvalue of the moment relaxation
matrices associated with each maximal clique as suggested in
[31], [32]. In the SOCP relaxation formulation, the constraint
presented in (3d) replaced by its conic relaxation form given in
(4h). Therefore an alternative approach to check the tightness
of the procured relaxation scheme is the difference between
c2ij + s2ij and ciicjj . The presented relaxation tightness mea-
sure employed here is based on the relaxed terms in the SOCP
relaxation in which c2ij + s2ij = ciicjj is replaced by its conic
relaxation form. In a radial network, the relaxation is exact
because the angles can be uniquely identified by an arbitrary
reference voltage. If the summation of angle differences of
bus-pairs over a cycle is zero, such a unique relationship can
be procured. Here, the term utilized in (24) indicates the gap in
the relaxation of the equation in (3d) to the SOCP form given
in (4h). If the difference is zero, it means that the relaxation is
exact. However, in practice, due to numerical precious issues,
the gap might not be exactly zero, but it can be close enough to
render a good quality solution. Therefore, this gap indicator
is employed in the algorithm as a measure of exactness for
the procured solution from the convex relaxation problem.
Since this differential value is small and near to zero so the
relaxation tightness is the minus of logarithmic value. The
measure for the tightness of the solution procured from is the
minus of logarithmic value of the difference between c2ij + s2ij
and ciicjj , where RT is the tightness measure for each pair
i, j and cii, cjj , cij , sij associated with pair i, j.

RT ij = − log
∣∣c2ij + s2ij − ciicjj

∣∣ (24)
G. Angle Recovery

As the relaxation gap may lead to an inexact solution,
calculating unique voltage angles by plugging the procured
solution of (23) into (5) is challenging. The procured voltage
magnitudes as well as inaccurate voltage angle differences
from CCR solution can be used as a warm start point for a non-
linear optimization problem solved by interior-point solvers, so
a feasible solution can be procured. As the relaxation gap is
small, the first-order Taylor approximation is utilized in this
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Section. If the voltage angle is approximated and all other
constraints of SOCP relaxation presented in (4) are satisfied,
a solution can be recovered. Therefore, the first-order Taylor
approximation is employed to approximate cij , sij .

cij ' ĉij +
∂cij
∂vi

(vi − v̂i) +
∂cij
∂vj

(vj − v̂j) +
∂cij
∂θij

(θij − θ̂ij)

(25a)

sij ' ŝij +
∂sij
∂vi

(vi − v̂i) +
∂sij
∂vj

(vj − v̂j) +
∂sij
∂θij

(θij − θ̂ij)

(25b)

Using cij , sij definition presented in (2) and Taylor approxi-
mation (25) leads to a new set of cij , sij . Running a post AC
power flow with the constraints of CCR formulation excluding
(21) and the two constraints obtained from the first-order
Taylor approximation gives new voltage angles. Note that
the decision variables in the angle recovery post optimization
problem are pij , qij , pg, qg, θij , vi.

min
∑
g∈G

Cg(pg) (26a)

s.t. cij = v̂jcosθ̂ij(vi − v̂i) + v̂icosθ̂ij(vj − v̂j)−
v̂iv̂jsinθ̂ij(θij − θ̂ij) + ĉij (26b)

sij = v̂jsinθ̂ij(vi − v̂i) + v̂isinθ̂ij(vj − v̂j)+
v̂iv̂jcosθ̂ij(θij − θ̂ij) + ŝij (26c)

(1g), (1h), (1i), (4b), (4c), (4d), (4e), (4f), (4g) (26d)

IV. CASE STUDY

To show the merit of the proposed cycle constraint
relaxation on the optimal power flow problem, several case
studies are presented. Also, the tightness of the procured
solution is compared with the one procured by the second-
order cone and sparse second-order semi-definite relaxation
methods. Here, Mosek [33] is employed as the off-the-shelf
solver to solve conic programming problem formulations.
The results presented here are performed on a PC with Core
i7 CPU 4.70GHz processor and 48 GB memory. Comparing
the optimality gap of utilizing various algorithms reveals that
the solution procured by the SOCP relaxation is not always
feasible with a zero optimality gap. Furthermore, it is shown
that the gap presented by the CCR method is diminished
compared to the optimality gap of the solution procured by
the SOCP relaxation method. In each case, it is shown that
the presented CCR-OPF approach can render a solution with
an enhanced tightness compared to the SOCP relaxation with
a computation burden much less than the SDP relaxation
method. Another measure to evaluate the exactness of a
convex optimization method is comparing their optimality
gap. The optimality gap introduced as the difference between
the objective value obtained from solving the nonlinear
original OPF problem with IPOPT [34] as the best known
feasible point for the non-convex AC-OPF problem and the
objective value obtained from solving the relaxed form of
OPF problem with Mosek [33] as a conic solver [8].

Gap% =
Objnonlinear −Objrelaxation

Objnonlinear
× 100 (27)

The optimality gap measure presented in (27) shows the
difference between the objective value of the solution procured
by the convex relaxation method as the lower bound and
the upper bound solution procured by solving the non-convex
original OPF problem. It should be noted that comparing the
optimality gap calculated for each relaxation approach is not
an indicator to determine if the solution that procured by
each method is feasible for the original non-convex problem.
However, along with the tightness measures introduced in
subsection III-F it can render a comparison of the relaxation
schemes.

A. IEEE 14-Bus System

In this subsection, the IEEE 14-bus system is considered
as a test case. IEEE 14-bus system consists of 20 lines, 5
generators, 3 transformers, and 11 loads as shown in Fig. 3.

A comparison of mean, maximum, standard deviation,
median, and minimum values of tightness are presented in
Table I given the tightness values of all bus-pairs with a
finite tightness. Comparing the mean and median values of
the tightness measures in Table I obtained from each method
shows that the tightness measure of the CCR method is slightly
improved compared to that of SOCP relaxation method. How-
ever, these comparisons reveal limited information on the merit
of the proposed relaxation scheme in this paper to enforce the
cycle constraints within the network. Therefore, the recovered
voltage angles difference for each bus-pair of the network
using CCR and SOCP relaxation methods are employed to
calculate the summation of angle differences within each cycle
of the network as shown in Table II. The network has 7 cycles

Fig. 3. The one-line diagram of IEEE-14 bus system with seven marked
cycles within the network
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as listed in Table II and noted in Fig. 3. It is interesting to
observe that the summation of angle difference each cycle
utilizing the CCR method is is smaller than that of employing
the SOCP relaxation. This is particularly notable in cycle IV,
where the mismatch in angles within the cycle is 11.453◦

using the SOCP relaxation method while that is 0.013◦ when
the CCR method is employed. Thus, by employing the CCR
method, the mismatch of the voltage angle constraint presented
in (6b) is smaller than the one procured by employing the
SOCP relaxation method.

Comparing the objective value, the solution time, and the
optimality gap of each method is another way to compare
the performance of various solution methods. In Table III,
the objective values, the solution time, and the optimality
gap of each relaxation method are presented. The solution
time of the CCR method is less than that for the sparse SDP
method, which means that the computational burden of the
CCR method is less than that of the SDP relaxation method.
The objective value of the CCR relaxation problem is less
than that obtained from the sparse SDP relaxation method and
more than the objective value procured by the SOCP relaxation
method. The optimality gap of the presented CCR method is
slightly larger than that of the solution procured by the SDP
relaxation method and smaller than that of the one procured
by the SOCP relaxation method.

B. 500-Bus System

In this section, a modified 500-bus system presented in [35]
is considered as a test case. The 500-bus system consists of
599 lines, 90 generators, 131 transformers, and 200 loads.

1) Base Case: In this setup, similar to the IEEE 14-
bus system test case, the tightness and performance of the
CCR method are compared with the SOCP and the SDP
relaxation methods.The tightness of the solutions procured by
each method is compared in Table IV. Comparing the number
of pairs with zero gap in Table IV illustrates that 8 bus-
pairs have zero gaps when the CCR method is employed, but
this number is 3 and 6 when the SOCP and SDP relaxation
methods are employed, respectively. The number of zero-gap
pairs gives the number of bus-pairs in which the equality
constraint (3d) holds while only enforcing the conic constraints
(4h) or (21a), i.e. the relaxation is exact for the bus-pair. The
mean, maximum, standard deviation, median, and minimum
values of the tightness measure presented in Table IV are
obtained from the tightness values of all bus-pairs with a finite
tightness measure. An interesting observation is a higher mean
and median value of finite tightness measures for the CCR
method compared to SOCP and SDP relaxation methods.

TABLE I
THE COMPARISON OF THE TIGHTNESS MEASURES’ STATISTICS WITH

VARIOUS RELAXATION METHODS FOR IEEE 14-BUS SYSTEM

Tightness Measure SOCP SDP CCR
Mean 15.7 15.87 15.84
Maximum 16.91 17.158 16.68
Standard Deviation 0.413 0.526 0.498
Median 15.59 15.76 15.73
Minimum 15.23 15.256 15.13
Number of Zero Gap Pairs 0 0 0

TABLE II
THE COMPARISON OF ANGLE DIFFERENCE SUMMATION OVER CYCLES

OF IEEE 14-BUS SYSTEM EMPLYING SOCP AND CCR METHODS

Cycle ID Cycle’s Bus Sequence SOCP CCR
I 1-2-5 0.389◦ 7×10−6◦

II 2-5-4 0.046◦ 4.8×10−6◦

III 2-4-3 1.886◦ 3×10−6◦

IV 7-4-9 0.441◦ 0.261◦

V 6-12-13 0.086◦ 3.6×10−6◦

VI 5-6-11-10-9-4 11.453◦ 0.013◦

VII 6-13-14-9-10-11 0.142◦ 1.8×10−6◦

TABLE III
THE COMPARISON OF OBJECTIVE VALUES AND SOLUTION TIMES OF
USING VARIOUS RELAXATION METHODS FOR IEEE 14-BUS SYSTEM

SOCP SDP CCR
Objective Value [$] 14,666.9 14,676.9 14,676.1
Solution Time [Sec.] 0.021 0.172 0.046
Optimality Gap [%] 0.07004 0.00191 0.00735

TABLE IV
THE COMPARISON OF THE TIGHTNESS MEASURES’ STATISTICS WHEN

USING VARIOUS RELAXATION METHODS FOR 500-BUS SYSTEM

Tightness Measure SOCP SDP CCR
Mean 15.82 15.77 15.90
Maximum 17.88 18.13 17.88
Standard Deviation 0.46 0.42 0.43
Median 15.71 15.69 15.75
Minimum 15.13 15.1 15.07
Number of Zero Gap Pairs 3 6 8

In Table V, the objective values, the solution time, and the
optimality gap of each method are presented. The objective
value procured by the CCR method is more than that obtained
from the SOCP relaxation method. The optimality gap of the
solution procured by the CCR relaxation method is less than
that obtained from the SOCP method while the solution time
of the CCR relaxation method is less than that of the SDP
relaxation method. Given the results of tightness from Table
IV and the performance of each method obtained from Table
V, one can conclude that the CCR method has a solution
time, less than SDP relaxation method and a solution with an
enhanced tightness compared to the SOCP relaxation method.
In this case, the average of summation of angle differences of
buses over cycles procured by the SOCP relaxation method
is 0.66◦ and it is 27.3% reduced to 0.48◦ when the CCR
relaxation method is employed.

TABLE V
THE COMPARISON OF OBJECTIVE VALUES AND SOLUTION TIMES OF

USING VARIOUS RELAXATION METHODS FOR 500-BUS SYSTEM

SOCP SDP CCR
Objective Value [$] 31,886 32,137 31,913
Solution Time [Sec.] 0.625 33.37 2.64
Optimality Gap [%] 2.0 1.2 1.9

2) Day-Ahead Case: Here, the day-ahead performance and
effectiveness of the proposed CCR method are compared
with the SOCP relaxation method. The results are shown in
Figs. 4, 5, and 6. The base demand is set according to the
normalized hourly load of California ISO on March 10, 2020.
An interesting observation is that for the same system, changes
in the demand throughout a day exhibit various tightness and
performance measures for various algorithms. However, the
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improvements in employing the CCR method compared to the
SOCP relaxation is consistent with those variations.

It is shown in Fig. 4 that optimality gap is improved
while employing the CCR method compared to employing the
SOCP relaxation method, i.e. the optimality gap of the CCR
method is at worst the same as the one for SOCP relaxation
method e.g. hours 4-18. However, there are hours in which
the optimality gap is notably reduced by employing the CCR
method e.g. hours 19 and 20. Enforcing the cycle constraints
in the CCR relaxation method leads to a smaller optimality
gap and a better quality solution in the day-ahead case. Note
that the optimality gap improvement is the subtraction of the
optimality gap of the solution procured by the CCR method
from the one procured by the SOCP relaxation method, divided
by the optimality gap of the solution procured by the SOCP
relaxation method. The comparison of the solution time for
various methods in Fig. 5 reveals that although the solution
time of the CCR method is greater than that of the SOCP
relaxation method, it is still much smaller than that in the
sparse SDP relaxation method. The number of exact bus-pairs,
as well as the mean of tightness measures of bus-pairs for the
SOCP and CCR relaxation methods, are compared in Fig. 6.
It should be noted that a combination of these two values
should be taken into account while comparing the tightness of
employing the two methods. If a larger number of bus-pairs are
exact for the CCR method, the median of the remaining inexact
bus-pairs could be smaller than that of the SOCP relaxation
method. This is because the exact bus-pairs of the CCR method
could already have large tightness measure values employing
the SOCP relaxation method. For example, at hour 1, when
the CCR method is employed, there are three more bus-pairs
with zero gap compared to the SOCP relaxation method while
the median of relaxation tightness measure is slightly smaller
using the CCR method. The optimality gap of the solution of
a relaxation method shows the tightness of the objective value
of the solution, while the RT measure shows the quality of the
solution procured by the relaxation method i.e. the possibility
of recovering a feasible solution from the relaxed solution. Fig.
6 and 4 illustrate that when the solution procured by the CCR
method has comparable optimality gap as the one procured
by the SOCP method, the quality of the solution procured by
the CCR method is mostly better than the one procured by

Fig. 4. The reduction in optimality gap of SOCP relaxation method by
implementing CCR relaxation method for 500-bus system

Fig. 5. Comparing the solution time of employing various relaxation methods
for 500-bus system

Fig. 6. Comparison between tightness measure and the total number of exact
bus-pairs for CCR and SOCP relaxation methods for 500-bus system

the SOCP method as shown in hours 12 and 13. Moreover,
when the optimality gap of the solution procured by the CCR
method is less than that procured by the SOCP method, the
solutions procured by both methods have a comparable quality
as shown in hours 19 and 20.

C. 793-Bus System

In this section, a modified 793-bus system presented in [35]
is considered as a test case. The 793-bus system consists of
912 lines, 210 generators, 143 transformers, and 568 loads.
The optimality gap of each method is presented in Table
VI, where it is shown that the objective values procured
by employing the CCR, sparse SDP, and SOCP relaxation
methods are in a close proximity of the objective value
procured from employing the non-convex OPF problem which
is an upper bound for the optimal solutions. Here, the lower
bound for the solutions is $27,479 while the upper bound
is $22,480. However, the solution procured by the CCR
method is expressing an enhanced tightness compared to the
SOCP method. An interesting observation is that the solution
rendered by employing CCR is tighter than that of the SOCP
relaxation method and is as tight as employing the sparse SDP
with a much smaller solution time. Besides, in this case, the
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average summation of voltage angle differences of buses over
cycles procured by the SOCP relaxation method is 0.53◦ and
it is 32.1% reduced to 0.36◦ when the CCR relaxation method
is employed.

TABLE VI
THE COMPARISON OF OBJECTIVE VALUES AND SOLUTION TIMES OF

USING VARIOUS RELAXATION METHODS FOR 793-BUS SYSTEM

SOCP SDP CCR
Objective Value [$] 22,479 22,480 22,480
Solution Time [Sec.] 0.53 30.9 3
Optimality Gap [%] 0.009 0.004 0.004

D. 2000-Bus System

In this section, a modified 2000-bus system presented in [35]
is considered as a test case. The 2000-bus system consists of
3206 lines, 544 generators, 1235 transformers, and 1125 loads.

Comparing the number of pairs with zero gap in Table
VII illustrates that 51 bus-pairs have zero gap when the
CCR method is employed, while this number is 49 when
the SOCP relaxation method is employed. The mean, maxi-
mum, standard deviation, median, and minimum values of the
tightness measures are presented in Table VII. Comparing the
mean, maximum, median, and minimum of the finite tightness
measures illustrated the superiority of the solution procured by
the CCR method compared to the SOCP relaxation method.

TABLE VII
THE COMPARISON OF THE TIGHTNESS MEASURES’ STATISTICS WHEN

USING VARIOUS RELAXATION METHODS FOR 2000-BUS SYSTEM

Tightness Measure SOCP SDP CCR
Mean 15.83 15.84 15.83
Maximum 18.96 18.42 18.52
Standard Deviation 0.44 0.43 0.43
Median 15.72 15.75 15.74
Minimum 15.05 15.02 15.08
Number of Zero Gap Pairs 49 44 51

As shown in Table VIII, the solution time of employing
the CCR method is more than that of the sparse SOCP
method. The computational burden of the CCR method is
less than the SDP method. The optimality gap of the solution
procured by the CCR relaxation method is smaller than the
SOCP relaxation method. This verifies the fact that the CCR
relaxation method generally renders a tighter solution than the
SOCP relaxation method. While the procured CCR solution
has a slightly smaller optimality gap than the SDP solution
as shown in Table VIII, the mean and median of relaxation
tightness measure for the SDP method are higher than that of
CCR method as shown in Table VII. Moreover, in this case, the
average summation of voltage angle differences of buses over
cycles procured by the SOCP relaxation method is 0.1◦, and it
is 3% reduced to 0.097◦when the CCR method is employed.

TABLE VIII
THE COMPARISON OF THE SOLUTION TIMES USING VARIOUS

RELAXATION METHODS FOR 2000-BUS SYSTEM

SOCP SDP CCR
Objective Value [$] 382,357 383,751 383,904
Solution Time [Sec.] 5.37 206.08 139.68
Optimality Gap [%] 0.89 0.52 0.49

V. CONCLUSION

This paper presented a cycle constraint relaxation approach
to procure a tight yet computationally efficient solution to
the non-convex AC-OPF problem. The non-convex cycle con-
straint to recover the voltage angle using the SOCP relaxation
method is discussed. Then, the second-order moment relax-
ation matrix is formed to present the lifting term required to
present the cycle constraints in the relaxed form. A second-
order cone is defined to relate the elements of the procured
second-order moment relaxation matrix. The solution procured
by the convex relaxation methods is not always feasible for
the original non-convex problem. It is illustrated that the
proposed approach generally presents a smaller relaxation gap
in comparison with SOCP relaxation. The solution time of
employing the proposed method is slightly larger than that
of the SOCP relaxation method and smaller than that of the
sparse SDP relaxation method. This indication is verified in
the case study section by comparing these relaxation schemes
for four different case studies ranging from small-scale to
large-scale systems. The effectiveness of the presented method
on enforcing the cycle constraints compared to the SOCP
relaxation method is explicitly illustrated. While the focus of
this work was not on procuring a feasible solution for the
original OPF problem, it is an interesting direction for future
studies.
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