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 

Abstract— With the increase in the investment in the gas-fired 

electricity generation technology, capturing the operation 

constraints of the natural gas network in the electricity and 

natural gas operation problems becomes more crucial. The non-

convexity in the feasibility region formed by natural gas network 

constraints will impede achieving the global solution for these 

problems. This letter proposed an algorithm to procure a tight and 

tractable convex relaxation for the natural gas network 

constraints that can be leveraged in the electricity and/or natural 

gas network operation problems. The merit of the proposed 

algorithm is illustrated using a case study and the efficiency of the 

proposed formulation is compared with mixed integer linear and 

semidefinite programming formulations.  

 
Index Terms— Convex relaxation, natural gas network, 

operation economics 

I. INTRODUCTION 

HE increase in the installed capacity of the renewable 
resources and the reduction in the price of the natural gas 
increase the installed capacity of the gas-fired generation 

units. This transformation in the generation portfolio will affect 
the nodal pressure in the natural gas network. The nonlinear 
relationship between the nodal pressure and the pipeline flow is 
enforced by Weymouth constraint. This constraint forms a 
nonconvex feasible region for the natural gas operation problem 
and mixed-integer linear programming approximation [1] and 
piecewise linear approximations [2] are employed to convexify 
the feasible region. Increasing the number of piecewise linear 
approximations improves the accuracy of the convex 
representation of the feasible region. Iterative approaches such 
as Newton-based and interior point methods were applied to 
find a solution for the electricity operation problem with natural 
gas network constraints [3],[4]; however, these approaches 
often suffer from dependence to the initial point and 
convergence to local solutions. Furthermore, capturing the bi-
directional flow of the natural gas in the operation problem is 
challenging using these approaches and the direction of the 
natural gas flow is considered as a priori. This letter proposed a 
tight convex relation of the natural gas operation problem to 
achieve a global solution with enhanced accuracy. A tractable 
algorithm is presented to ensure the tightness as well as the 
validity of the convex representation for the natural gas 
operation planning problem. The effectiveness of the proposed 
approach is evaluated for a sample natural gas network. To 
illustrate the merit of the proposed approach, the proposed tight 
convex relaxation is compared with the case in which the 
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problem is formulated as 1) a MILP problem and solved by 
branch and bound approach and 2) SDP relaxed problem solved 
by primal-dual interior point method. 

II. PROBLEM FORMULATION 

The problem formulation for the natural gas operation 
planning problem is given in (1).  

  min ∑ �� ∙ ���                             (1a) 	 ≤ 	� ≤ 	           ∀
      (1b) −��,���� ≤ ��,� ≤ ��,����        ∀
, ∀�     (1c) 

   �� ≤ �� ≤ ��           ∀�       (1d) ∑ ��� ∙ ��� = �� + ∑ ��,��∈��       ∀
      (1e)  

��
 ��,� = �!"(	� , 	�) ∙ %�,�&'	� − 	�'

�!"(	� , 	�) = *1          	� ≥ 	�−1       	� < 	�
          ∀
, ∀�    (1f) 

	� ≤ Γ�,� ∙ 	�

        

Γ�,� ≥ 1
          

(1g) 

The total cost of withdrawn natural gas is minimized as 

shown in (1a), where �� is the marginal cost of supply at the 

resource � and �� is a decision variable for the volume of natural 

gas withdrawn from resource � [5]. Other objectives including 
minimizing the power consumption of the compressors could 
be considered for the natural gas operation problem [6]. The 

pressure limits at junctions are illustrated in (1b). Here, 	� is the 

decision variable for the squared pressure at junction 
, while 	 

and 	 are the minimum and maximum squared nodal pressure. 
Additionally, the capacity limits of natural gas flow in pipelines 

are given in (1c), where ��,� is the natural gas flow in the 

pipeline, and ��,���� is the capacity of the pipeline connecting 

junctions 
 and �. The capacity of natural gas supply at source 
junctions is given in (1d), where the maximum and minimum 

limits for the withdrawn natural gas at the source s  is shown by �� and ��, respectively. The supply/demand balance at junction 
 is presented in (1e), where
s
jA is an incidence matrix for the 

junction-resource, �� is the demand at junction 
, and 0� is the 

set of junctions connected to junction 
. Despite the 
assumptions made in [5], the direction of flow in the pipeline is 
not a priori. The non-convex Weymouth constraint that 
represents the dependence of the natural gas flow to the 

pressures at the connected junctions is given in (1f). Here %�,� is 

the constant for the pipeline connecting junctions 
 and �, and �!"(	� , 	�) is determined by the difference among the pressure 
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at junctions 
 and �. The compression in the natural gas network 

is represented by (1g), where Γ�,� is the maximum compression 

ratio of the compressor [5]. 
The formulation (1) is a nonlinear and nonconvex problem 
because of the set of nonconvex constraints (1f). The set of 

constraints (1f) are reformulated to (2) in which 1�,�is a binary 

variable. If 	� ≥ 	� then �!"(	� , 	�) = 1 and 1�,� = 0. 

Otherwise, 1�,� = 1 and �!"(	� , 	�) = −1. Constraint (2) is 

further relaxed by introducing the lifting variables. 

��,� = %�,� 3&'	� − 	�' − 21�,�&'	� − 	�'5      (2) 

III. SOLUTION METHODOLOGY 

This section presents a novel algorithm to procure a tight 
convex relaxation for the problem (1) utilizing the lower orders 
of the moment relaxation compared to the current approaches 
[7]. The non-convex optimization problem (1) can be 
reformulated into a convex relaxed form (3).  Here, a sparse first 
order moment matrix for the nonlinear variables associated with 

pipelines connected to junction 
 is presented in (3f), where 6(.) 
represents the lifting variables that replace the nonlinear terms 
in the natural gas operation problem. The subscript indicates the 
nonlinear terms that is relaxed using the lifting variables. For 

example, lifting variable 6&'8�98:' replaces the nonlinear term 

&'	� − 	�'. All lifting variables are presented in the moment 

relaxation matrix given in (3f). Here, (1c) is rewritten as (3c) as ��,� is replaced by the function of junction pressures given in (2) 

and the introduced lifting variables. The inequality constraint 

(3d) is written using (1d) in which �� is represented as a 

function of demand �� and ��,� using (1e) and ��,� is formulated 

using lifting variables in (2). 

min ∑ �� ∙ ;∑ ��� ∙ <�� + ∑ %�,� <6&'8�98:' − 26=�,:&'8�98:'>�∈�� >� ?�        

(3a)  
 	 ≤ 	� ≤ 	                 ∀
  (3b) 

−��,���� ≤ %�,� <6&'8�98:' − 26=�,:&'8�98:'> ≤ ��,���� ∀
, � (3c) 

∑ ��� ∙ ��� ≤ �� + ∑ %�,� <6&'8�98:' − 26=�,:&'8�98:'>�∈�� ≤
∑ ��� ∙ ���                   ∀
  (3d) 

 	� ≤ Γ�,� ∙ 	�

        

Γ�,� ≥ 1
          

(3e) 

@AA
AAB

1 6=�,: 6&'8�98:'6=�,: 6=�,: 6=�,:&'8�98:'6&'8�98:' 6=�,:&'8�98:' 	� − 	� + 269=�,:(8�98:)CDD
DDE ≻ 0 (3f) 

In (3d), for those junctions with natural gas resources the 
upper and lower limits will be the minimum and maximum 
capacity of the natural gas resources. For those junction without 
natural gas resources, the upper and lower limits are zero. In the 
relaxed formulation, the employed lifting variables associated 

with each junction will form a sparse moment matrix associated 
with that junction as shown in (3f).       

The problem (3) is a semi-definite programming (SDP) 
problem which represents the first order moment relaxation [7]. 
Although the presented convex relaxation is computationally 
inexpensive, the procured solution of the relaxed problem is 
exact and feasible for the original non-convex problem if and 
only if the first order moment matrices are rank-1. Otherwise, 
increasing the order of the moment relaxation tightens the 
relaxation and ensures the exactness of the procured solution 
[7]. However, increasing the order of the moment relaxation 
and the size of the moment matrix at this step will increase the 
computation burden exponentially and may not be tractable as 
the size of the network increases. Therefore, for the constraints 
associated with the moment matrices with a higher than one 
rank, the reformulation-linearization technique (RLT) is 
leveraged to reduce their rank. An example of such RLT 
constraints is given in (4) for the lower bound of the inequality 
given in (3d). 

��G + 2�� ∑ H%�,� <6&'8�98:' − 26=�,:&'8�98:'>I�∈�� +
∑ J%�,�G K	� − 	� + 269=�,:(8�98:)LM�∈�� − ∑ 2��� ∙�
�� ∙ <�� + ∑ %�,� <6&'8�98:' − 26=�,:&'8�98:'>�∈�� > +
∑ ��� ∙ ��G� ≥ 0                (4) 

If solving the relaxed problem with RLT constraints renders 
rank-1 solution for all sparse moment matrices, the procured 
convex relaxation is exact. Otherwise, the next step is to add 
valid constraints to tighten the relaxed problem. An example of 
such valid constraints that leverage McCormick envelopes is 
given in (5). 	� − 	� + 269=�,:(8�98:) ≥ 2(N	 − 	)6&'8�98:' − (	 − 	) 

                       (5a) 	� − 	� ≤ 6=�,:(	 − 	)              (5b) 	� − 	� + 269=�,:(8�98:) ≤ (N	 − 	)6&'8�98:' − (	 − 	) (5c) 

If adding the valid constraints to the relaxed problem renders 
a rank-1 solution, the procured solution is exact. Otherwise, a 
higher order of the moment relaxation is employed for the 
matrices with higher than one rank. The asymptotic 
convergence is guaranteed with higher order of moment 
relaxation [7]. The procedure of adding RLT constraints, valid 
constraints, and higher order moment relaxation continues until 
the rank of all moment matrices is one. The proposed approach 
procures a rank-1 solution by tightening the relaxation using 
valid constraints and lower order of moment matrices. 
Otherwise, a higher-order moment relaxation is used to the 
extent necessary. 

IV. ILLUSTRATIVE EXAMPLE 

The characteristics of the natural gas resources and pipelines 
of a sample 6-junction network shown in Fig. 1, are given in 
Tables I and II, respectively. The minimum and maximum 
nodal pressures are 105 and 170 Psig respectively. The natural 
gas demands at junctions J1, J2, J3 are 2200, 650 and 1500 kcf 
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respectively. The maximum compression ratio between 
junctions J2 and J7 is 1.1 

TABLE I 
NATURAL GAS RESOURCE CHARACTERISTICS 

Resource 
Connected  

Junction 

Minimum Capacity 

(kcf) 

Maximum Capacity 

(kcf) 

Cost 

($/kcf) 

v1 J5 1500 5000 2.6 

v2 J6 1000 6000 3.2 

TABLE II 
NATURAL GAS PIPELINE CHARACTERISTICS 

Line 

ID 

Upstream 

Junction 

Downstream 

Junction 

Pipeline Constant  

 (kcf /Psig) 

Capacity 

(kcf) 

PL1 J2 J1 75.5 3000 
PL2 J4 J2 91.5 1000 
PL3 J4 J3 82 3000 
PL4 J5 J4 72 5000 

PL5 J7 J6 81.5 6000 

To solve the formulated SDP problem, Mosek 7 solver is 
employed. In this case, the volume of natural gas withdrawn 
from resource v1 and v2 is 2500 kcf and 1850 kcf. The procured 
pressures at the junctions of the network using the proposed 
convex relaxed formulation are compared with those procured 
by formulating SDP relaxed and MILP problems [2] in Table 
III. Here, the total operating cost is $12420, and the solution 
time is 0.87 sec. Using the SDP relaxed formulation, the total 
operation cost is $11910, and the solution time is 0.81 sec. 
Moreover, formulating the problem as MILP problem and 
solving using branch and bound approach leads to $12425 in 
operation cost and 7.23 sec in solution time. It is worth noting 
that the solution procured by solving the SDP relaxed problem 
renders the lower bound for the solution to the original 
nonconvex optimization problem and is not necessarily feasible 
for this problem. Moreover, the solution procured for the MILP 
problem is locally optimal. 

The natural gas flow in the pipelines is compared for the 
solution of the proposed formulation, with the solutions of the 
SDP relaxed and MILP formulation in Table IV. In addition to 
the optimality gap, the procured flows may not be accurate for 
the MILP problem formulation because of the error in the piece-
wise linearization of the Weymouth constraint. Here, the flow 
of natural gas in the pipelines procured by solving the SDP 
relaxed problem is not feasible for the original non-convex 
optimization problem. However, the proposed tight convex 
relaxation provides accurate and optimal junction pressure and 
flow in the pipelines that satisfy the Weymouth constraint.  

TABLE III 
NATURAL GAS PRESSURE AT JUNCTIONS USING DIFFERENT FORMULATIONS 

[PSIG] 

Junction ID J1 J2 J3 J4 J5 J6 J7 

Proposed 
relaxation  

141.8 144.7 144 145.1 149.2 141.4 143.2 

SDP relaxation 132.0 145.3 126.8 138.9 156.5 141.9 152.4 

MILP [2] 110.0 113.8 112.8 114.3 119.4 113.8 116 

TABLE IV 
PROCURED NATURAL GAS FLOW WITHIN PIPELINES USING DIFFERENT 

FORMULATIONS [KCF] 

Pipeline ID PL1 PL2 PL3 PL4 PL5 PL6 

Proposed 

relaxation 
2200 1000 1500 2500 1850 1850 

SDP relaxation 2200 1850 1500 3350 1000 1000 

MILP [2] 2200 992.4 1500 2492.4 1857.4 1857.4 

As the proposed tight convex relaxation seeks for a rank-1 
solution, it is important to measure the tightness of the proposed 
convex relaxed formulation. Here, the average ratio of the 
largest to the second largest eigenvalues of the sparse SDP 
matrices associated with each junction is considered a measure 
of tightness. The ratio is increased from 2175 for the SDP 
relaxed formulation to 1.2E+9 for the proposed tight convex 
relaxed formulation. The relatively small tightness ratio of the 
SDP relaxed problem leads to an infeasible solution for the 
original non-convex problem, while the large tightness ratio of 
the proposed convex relaxed problem formed by applying the 
proposed relaxation approach leads to a feasible solution for the 
original non-convex problem. 

V. CONCLUSION 

This letter explored the non-convexity associated with the 
natural gas operational planning problem raised by the 
employment of Weymouth constraint. A methodology is 
proposed to procure a convex relaxation for the natural gas 
operation planning problem. The proposed approach will 
tighten the relaxation in order to procure a rank-1 solution of 
the relaxed problem that ensures feasibility of procured solution 
for the original non-convex problem. The effectiveness of the 
proposed methodology is verified in an example. The proposed 
convex relaxation can be further employed to address natural 
gas flow dynamics for the short-term operation problems.  
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Fig. 1. The sample natural gas network 
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