
Training A Deep Reinforcement Learning Agent for
Microgrid Control using PSCAD Environment

Arash Farokhi Soofi
Electrical & Computer Engineering
University of California, San Diego

San Diego, USA
afarokhi@ucsd.edu

Reza Bayani
Electrical & Computer Engineering
University of California, San Diego

San Diego, USA
rbayani@ucsd.edu

Mehrdad Yazdanibiouki
Electrical & Computer Engineering

San Diego State University
San Diego, USA

myazdanibiouki6352@sdsu.edu

Saeed D. Manshadi
Electrical & Computer Engineering

San Diego State University
San Diego, USA

smanshadi@sdsu.edu

Abstract—The accessibility of real-time operational data along
with breakthroughs in processing power have promoted the use of
Machine Learning (ML) applications in current power systems.
Prediction of device failures, meteorological data, system outages,
and demand are among the applications of ML in the electricity
grid. In this paper, a Reinforcement Learning (RL) method
is utilized to design an efficient energy management system
for grid-tied Energy Storage Systems (ESS). We implement
a Deep Q-Learning (DQL) approach using Artificial Neural
Networks (ANN) to design a microgrid controller system
simulated in the PSCAD environment. The proposed on-grid
controller coordinates the main grid, aggregated loads, renewable
generations, and Advanced Energy Storage (AES). To reduce the
cost of operating AESs, the designed controller takes the hourly
energy market price into account in addition to physical system
characteristics.

Index Terms—Microgrid energy management system,
Distributed energy resources, Reinforcement learning, Deep
Q-learning, Artificial neural network

I. INTRODUCTION

Distributed Energy Resources (DERs) have been
experiencing a rapidly growing presence in the power systems
due to government policies, technological advancements, and
environmental concerns to meet the increasing electricity
demand. Residential rooftop photovoltaics (PV) and residential
Energy Storage Systems (ESSs) have increased by 51% and
18%, respectively, since 2011 [1]. Microgrids are small-scale
electricity networks that can be operated independent of the
main grid and are composed of DERs, ESSs, and consumers.
In addition to providing electricity to remote places outside
the reach of the conventional grid, these structures are
introduced to improve the reliability and resilience of modern
power systems [2]. Even though the integration of DERs
improves grid operations, it also presents operators with a
number of challenges, such as variations in the grid’s voltage
and frequency [3], [4]. The need for Microgrid Energy
Management Systems (MEMS), which maximize the flow
of energy by making the most of the available renewable
resources, has increased due to the growing DER penetration.

DERs are one of the most efficient demand responsive
assets of the grid. In [5], authors designed a MEMS for both
residential and commercial DERs to perform peak shaving and
load smoothing using a low complexity fuzzy logic control.
An adaptive optimal model predictive control is introduced in
[6] to establish balance between generation and demand in
low-inertia power systems. Historical data is utilized in [5] to
forecast and optimize the power exchange between DERs and
the grid. An energy management solution for a multi-resource
microgrid using fuzzy logic while including uncertainty by
using an ANN to forecast demand and DER output is proposed
in [7]. Many researchers have used fuzzy logic, interval
programming, and stochastic programming models in the
design of MGEMSs. Despite the many benefits provided by
these approaches, several factors contribute to reducing their
accuracy and effectiveness. For instance, lack of requirement
for particular set of inputs compromises the solution accuracy
of fuzzy logic [8]. Also, most of these approaches implement
simplifying assumptions to reduce problem complexity to
relieve the computation burden.

The smart grid infrastructure development has produced
a wealth of historical operational datasets, which help
applying Machine Learning (ML) algorithms to power system
problems. An ML model for efficient event detection based
on datasets of field-recorded PMUs is presented in [9]. The
authors in [10] have demonstrated the capability of ANN
in forecasting solar insolation. A weather prediction module
in the energy management system by use of a feed-forward
ANN is presented in [11]. Authors in [12] utilized a
supervised machine learning algorithm in designing a power
flow management platform for microgrid resources given the
voltage, load, and weather data. The study in [13] proposes an
unsupervised learning algorithm to predict next-hour energy
demand and determine a discrete set of actions for AES to
meet the predicted load. As it is suggested by the authors
[13], the unsupervised approach lacked accuracy compared to
the results obtained by a supervised ANN model. To increase

the accuracy of these methods, Reinforcement Learning (RL)
models are proposed to develop rules (policy) using dynamic
data obtained through interactions with the existing system.
RL algorithms are a great tool to tackle uncertain network
parameters and their effectiveness has been demonstrated in
applications such as electric vehicle management [14] and
electricity markets [15]. An RL approach to design a multi
microgrid energy management where the electric systems
states are estimated using multi-layer ANN is proposed in [16].

In this paper, a Deep Q-Network (DQN) agent is utilized to
operate DERs under specific modes of operation which are
voltage regulation, minimizing operation cost, and meeting
the load demand. We use a dynamic modeling simulation
software (PSCAD) to simulate smart grid features by
providing measured data points to the agent for internal
analysis. The DQN agent controls the AES while mimicking
other characteristics of the electric system grid, including
PV generation, weather forecasting, energy market price,
power losses, and time. This approach helps to better
understand realistic results compared to previous projects,
where mathematical models of the electric system or
supervised learning techniques were used to represent the
behavior of the grid.

II. PROBLEM FORMULATION

Unlike supervised and unsupervised ML methods, in RL,
the agent policies are learned through interactions with
the environment. At each time step (index t), specific
characteristics of the environment are represented by the state
(denoted by st). Every time the agent takes a specific action
(denoted by at), a certain reward (denoted by rt) results, and
the environment’s state is updated. The optimal solution to the
problem is determined based on Bellman’s equation stated in
(1). Here, Q denotes the value of taking action at in state st.
Actions are selected based on the policy, which in the DQN
context, is the ANN which approximates the Q-value.

Q(st, at) = R(st, at) + γmax
at+1

Q(st+1, at+1) (1)

A. Reward Definition

In this part, we first introduce the desired operational
constraints which are included in the problem and then, three
different reward functions which are used to train our model
are described. Equation (2a) enforces the State-of-Charge
(SOC) of the AES to stay between the nominal minimum
and maximum values. The AES real power dispatch (denoted
by P) is enforced within its nameplates by (2b). The real
power set-points are considered discrete steps to improve the
DQN agent performance by minimizing the action’s array
dimension. The primary objective of the DQN agent is to
dispatch the AES so that the bus voltage (denoted by V)
does not violate the normal bounds given in (2c). The voltage
rewards are designed in a way that this constraint is satisfied.

SOCAES−Min
t ≤ SOCAESt ≤ SOCAES−Max

t (2a)

PAES−Min
k ≤ PAESk ≤ PAES−Max

k (2b)

V Bus−Min
k ≤ Vk ≤ V Bus−Max

k (2c)

1) Voltage Regulation: The DQN’s objective is to maximize
the reward gained from the environment based on defined
reward functions. In the Discrete Voltage Reward Function
(DVRF), the agent is penalized when the voltage falls outside
the 5% and 10% thresholds as resented in (3a). However, in
the Continuous Voltage Reward Function (CVRF) the agent is
penalized based on the difference between the voltage of bus
i (Vi) and Nominal voltage (VN) as presented in (3b).

DV RF =

{
−5 If : |Vi − VN | > 5%
−10 If : |Vi − VN | > 10%

(3a)

CV RF =

{
Vi−VN

VN
If : Vi 6= VN

0 If : Vi = VN
(3b)

2) Minimizing Operation Cost: The next objective of the
DQN agent is to dispatch power to minimize the cost of
charging the battery. Given historical hourly time-of-use data
[17], the AES should become charged when the energy market
price falls below the average market price during a particular
day, and the energy storage must discharge when the hourly
price of the energy market is above the average market price
during a particular day. This behavior is applied by defining a
reward function in (4). Here, Ct denotes the time-of-use price
at time t where C̄d denotes the daily average energy market
price.

Market Reward =

Ct − C̄d > 0 Discharge
Ct − C̄d = 0 Idle
Ct − C̄d < 0 Charge

(4)

3) Meeting the Demand: Finally, the demand response
(DR) is defined as a reward function in (5), where DR
reward takes priority over the market reward. This step
requires finding the net generation and price difference defined
respectively in (5a) and (5b) before calculating the conditional
DR reward given in (5c).

Net−Generation =
∑
kεm

PPVk +
∑
kεm

PAESk − PLoadk (5a)

Price− difference = Ct − C̄d (5b)

DR R =

if Net−Gen. > 0 :

{
if Price− df ≥ 0 : Dis
if Price− df < 0 : Ch.

if Net−Gen. ≤ 0 : Dis.
(5c)

III. SOLUTION METHODOLOGY

Algorithm 1 describes the architecture of the implemented
algorithm. There are two nested for loops that iterate through
the episode counts (up to maximum episode imax), where each
episode is iterated for tmax time steps. At the beginning of
each episode, the environment is reset. In the very first episode,
the system is initialized with the nominal values. In the next

episodes, the continuous values such as SOC, bus voltages, and
commanded set-points are inherited from the last time-step of
the previous episode. Resetting the environment with nominal
values periodically helped eliminate the consecutive state
dependencies.

At each time-step, an action is selected based on policy π.
We select the ε-greedy policy for our training, where actions
are selected randomly with a probability of ε. Otherwise (with
a probability of 1 − ε), the action which yields the best
Q-value is chosen. Then, the selected action is applied to the
environment which brings about reward rt and updates the
environment’s state st+1. At this point, the experience tuple is
added to the replay buffer. If the number of stored experience
tuples in the replay buffer is more than the determined buffer
size, a batch of experience tuples is selected randomly. Then,
the Q-value (yt) is determined based on line 8, which is used
to calculated the loss function defined in line 9 to update ANN
weights.

Algorithm 1: Deep Q-Learning Using Experience
Replay

Initiate: Q-value approximator ANN with random
weights

1 for i = 1 : imax do
2 Reset the environment
3 for t = 1 : tmax do
4 at ← π(st)
5 st+1, rt ← env(st, at)
6 Store the experience tuple (st, at, rt, st+1) in

memory D
7 select a sample batch from D
8 yt ← rt + γmaxat+1 Q(st+1, at+1)
9 Update ANN weights with

Loss = (Q(st+1, at+1)− yt)2
10 end
11 end

In our simulation, the ANN Q-approximator represents
tge agent, where policies are determined by the value
of each action. The environment includes the PSCAD
dynamic simulation, reward function, and the stored data. The
complexity of the environment development is primarily due
to the power system dynamic modeling being used as the
environment. Fig. 1 illustrates the primary components for
defining the DQN framework.

IV. SIMULATION SETUP

PSCAD is a dynamic modeling software and has a robust
parallel computation capability, which enables running the
simulations close to real-time by designing proper pipelines.
In addition, PSCAD provides a strong scripting functionality
which was used for the automation process in this project.
Article [18] describes different methodologies to simulate the
time domain instantaneous responses using Electromagnetic
Transients including DC (EMTDC). EMTDC is designed to

Fig. 1. Detailed Main Loop

capture the transient responses in an electric system and
PSCAD is the graphical user interface to work on EMTDC.

The elements of the experience tuple are defined as follows.
States are 2-D numerical arrays that are formatted using
Python’s Pandas data frames. The columns of the data frame
include the system measurements, and the rows represent
measurements in different time steps throughout a specific
period. We take multiple measures after applying a particular
action was to capture system transients, command delays,
and other none ideal criteria in real-world operations. State
includes the measurements from the PSCAD model and other
external inputs at time t, which is a Numpy array as follows:
{t, V BUSPhaseA,B,C

, Ct, C̄d, PLoad, PPV , PAES , SOCAES}.
The index of the taken action at time t which is equal to [0,1,2]
which respectively represents [Charge, Idle, Discharge].

The PSCAD automation file contains the python scripts
responsible for synchronizing the PSCAD simulations with
the DQN agent. At each time step, the DQN agent suggests an
action based on the ε-greedy policy. The PSCAD automation
file contentiously listens to the DQN agent, forms the pipeline
between the DQN agent, and applies the suggested actions
to the PSCAD software. In addition to creating this pipeline,
the PSCAD automation file is essential for recording the
measurements from PSCAD that generate the environment
states.

V. RESULTS AND DISCUSSIONS

In this section, the designed DQN agent is demonstrated in
different cases. The base case creates the realistic condition by
assuming historical values, and normal trends for loads and
renewable generation. The episode is defined as one entire
day (twenty-four hours) and the time steps in each episode
are one hour. The structure of neural network affects the
loss function of DQN. Utilizing the same structure for neural
network as the fixed rate definition increases the convergence

rate of the learning algorithm [19]. In Fig. 2, it is shown that
utilizing neural network with 2 hidden layers leads to less loss
overshoot and earlier converge compared to utilizing neural
network with 3 hidden layers.

Fig. 2. Convergence rate of different neural network structures

Other than number of hidden layers, the activation function
of the NN affects the convergence rate of the algorithm.
Table I shows how utilizing ReLU function can increase the
convergence rate. It is demonstrated that the best choice is to
utilized ReLU function in a NN with 2 hidden layers.

TABLE I
NEURAL NETWORK STRUCTURE COMPARISON

Structure # Activation Function Layers Convergence
1 Sigmoid 3 115
2 ReLU 2 80
3 ReLU 3 100

A. Voltage Reward Case

Based on the power quality requirements, the voltage
magnitude of the buses should remain within 95% and 105%
of the voltage nominal value.

Fig. 3 shows the calculated loss function assuming the
agent is only considering the voltage stability which is
presented in (3). Since the baseline scenario was simplified,
the agent was expected to explore the environment and
minimize the calculated loss between Q expected and
Q target. Consequently, the problem reached acceptable loss
function in approximately 80 episodes.

Fig. 3. Convergence of the proposed DQN agent with voltage reward function

B. Market Price Reward Case

In this scenario, the reward function was targeted to
optimize the Battery Energy Storage System (BESS) dispatch
based on hourly market price compared to the average market
price of the same day, obtained from historical data as
presented in (4). The main objective is to charge the AES (i.e.
BESS) with the lowest cost to achieve certain SOC threshold at
the end of each episode. Fig. 4 depicts a single-day operation
of the AES based on dispatched set-points received from the
DQN agent. The SOC, market hourly price, PV generation,
load, and AES actions are shown in Fig. 4. The agent considers
the global objective while deciding the best action for each
hour. As demonstrated, the AES is dispatched to charge when
the hourly market price falls below the average market price,
and ASE’s SOC is achieved and maintained above 60% after
t=21 (9 PM). From time steps 1 to 5, the hourly energy market
price is below the average price; thus, the agent should send
either charge or idle set points to the AES. If the AES SOC
is below 50%, the agent is expected to only send the charge
set point.

Fig. 4. Power dispatch of the BESS procured by the agent based on market
reward function

C. Demand Response Reward Case

In this scenario, the agent was designed to respond
to the demand fluctuations as a demand-responsive asset.
The designed DQN agent must consider the market price
and the excess PV generation to charge the battery. The
demand-response reward function only considers the net
generation and the net demand to evaluate the proper times
to charge the AES. Therefore, the objective is to charge the
AES when there is excess generation and discharge the AES
when demand exceeds the generation. Although this reward
function meets the Demand Response objectives, it eliminates
the rest of the constraints. The cumulative reward function was
defined to address how to optimize AES dispatch based on
the system constraints, voltage reward, market price reward,
and the cumulative reward shown in (5c). Fig. 5 represents
the loss function considering the cumulative reward. A linear
regression model was used to demonstrate the decreasing trend
of the loss function upon training the model with more sample
data. Comparing Fig. 5 to the results of the base model
presented in Fig. 3, we can see how the increase in model

complexity requires more sample data to train the defined
DQN agent based on the defined objective functions.

Fig. 5. Cumulative reward function: demand response, market price, voltage

VI. CONCLUSION

This article addressed the application of reinforcement
learning in designing a microgrid controller for a grid
following operation modes. The primary purpose of this
article was to improve the existing procedures for designing
microgrid energy management solutions. The previous papers’
approaches were mainly based on optimization techniques
such as fuzzy logic and linear programming or conventional
supervised and unsupervised machine learning algorithms. The
designed procedure aimed to optimize the energy flow between
the AES and the primary grid. The Deep Q-learning algorithm
helped the system to dispatch the optimized set points using
the feedback from the environment.

REFERENCES

[1] C. L. Kwan, “Influence of local environmental, social, economic and
political variables on the spatial distribution of residential solar pv arrays
across the united states,” Energy Policy, vol. 47, pp. 332–344, 2012.

[2] R. Bayani, A. F. Soofi, and S. D. Manshadi, “Coordinated scheduling of
electric vehicles within zero carbon emission hybrid ac/dc microgrids,”
in 2021 IEEE Transportation Electrification Conference & Expo (ITEC).
IEEE, 2021, pp. 1–6.

[3] A. F. Soofi, R. Bayani, and S. D. Manshadi, “Analyzing power quality
implications of high level charging rates of electric vehicle within
distribution networks,” in 2021 IEEE Transportation Electrification
Conference & Expo (ITEC). IEEE, 2021, pp. 684–689.

[4] A. Farokhi Soofi, R. Bayani, and S. D. Manshadi, “Investigating
the impact of electric vehicles on the voltage profile of distribution
networks,” arXiv e-prints, pp. arXiv–2012, 2020.

[5] D. Arcos-Aviles, J. Pascual, F. Guinjoan, L. Marroyo, P. Sanchis,
and M. P. Marietta, “Low complexity energy management strategy
for grid profile smoothing of a residential grid-connected microgrid
using generation and demand forecasting,” Applied energy, vol. 205,
pp. 69–84, 2017.

[6] A. Abazari, M. M. Soleymani, M. Babaei, M. Ghafouri, H. Monsef,
and M. T. Beheshti, “High penetrated renewable energy sources-based
aompc for microgrid’s frequency regulation during weather changes,
time-varying parameters and generation unit collapse,” IET Generation,
Transmission & Distribution, vol. 14, no. 22, pp. 5164–5182, 2020.

[7] A. Chaouachi, R. M. Kamel, R. Andoulsi, and K. Nagasaka,
“Multiobjective intelligent energy management for a microgrid,” IEEE
transactions on Industrial Electronics, vol. 60, no. 4, pp. 1688–1699,
2012.

[8] M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy
management systems: A critical review on methods, solutions, and
prospects,” Applied energy, vol. 222, pp. 1033–1055, 2018.

[9] T. Dokic, R. Baembitov, A. A. Hai, Z. Cheng, Y. Hu, M. Kezunovic,
and Z. Obradovic, “Machine learning using a simple feature for
detecting multiple types of events from pmu data,” in 2022 International
Conference on Smart Grid Synchronized Measurements and Analytics
(SGSMA). IEEE, 2022, pp. 1–6.

[10] R. Nematirad and A. Pahwa, “Solar radiation forecasting using artificial
neural networks considering feature selection,” in 2022 IEEE Kansas
Power and Energy Conference (KPEC). IEEE, 2022, pp. 1–4.

[11] J. Faraji, A. Abazari, M. Babaei, S. Muyeen, and M. Benbouzid,
“Day-ahead optimization of prosumer considering battery depreciation
and weather prediction for renewable energy sources,” Applied Sciences,
vol. 10, no. 8, p. 2774, 2020.

[12] H. Jung and M. Pedram, “Supervised learning based power management
for multicore processors,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1395–1408,
2010.

[13] H. Musbah, H. H. Aly, and T. A. Little, “Energy management of
hybrid energy system sources based on machine learning classification
algorithms,” Electric Power Systems Research, vol. 199, p. 107436,
2021.

[14] R. Bayani, S. D. Manshadi, G. Liu, Y. Wang, and R. Dai, “Autonomous
charging of electric vehicle fleets to enhance renewable generation
dispatchability,” CSEE Journal of Power and Energy Systems, 2021.

[15] M. Jabbari Zideh and S. S. Mohtavipour, “Two-sided tacit collusion:
Another step towards the role of demand-side,” Energies, vol. 10, no. 12,
p. 2045, 2017.

[16] Y. Du and F. Li, “Intelligent multi-microgrid energy management based
on deep neural network and model-free reinforcement learning,” IEEE
Transactions on Smart Grid, vol. 11, no. 2, pp. 1066–1076, 2019.

[17] X. Yan, D. Wright, S. Kumar, G. Lee, and Y. Ozturk, “Enabling
consumer behavior modification through real time energy pricing,”
in 2015 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops). IEEE, 2015, pp.
311–316.

[18] O. Anaya-Lara and E. Acha, “Modeling and analysis of custom power
systems by pscad/emtdc,” IEEE Transactions on Power Delivery, vol. 17,
no. 1, pp. 266–272, 2002.

[19] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

	Introduction
	Problem Formulation
	Reward Definition
	Voltage Regulation
	Minimizing Operation Cost
	Meeting the Demand

	Solution Methodology
	Simulation Setup
	Results and discussions
	Voltage Reward Case
	Market Price Reward Case
	Demand Response Reward Case

	Conclusion
	References

